图像插值

图像插值

在做数字图像处理时,经常会碰到小数象素坐标的取值问题,这时就需要依据邻近象素的值来对该坐标进行插值。比如:做地图投影转换,对目标图像的一个象素进行坐标变换到源图像上对应的点时,变换出来的对应的坐标是一个小数,再比如做图像的几何校正,也会碰到同样的问题。以下是对常用的三种数字图像插值方法进行介绍。

1、最邻近元法

这是最简单的一种插值方法,不需要计算,在待求象素的四邻象素中,将距离待求象素最近的邻象素灰度赋给待求象素。设i+u, j+v(i, j为正整数, u, v为大于零小于1的小数,下同)为待求象素坐标,则待求象素灰度的值 f(i+u, j+v) 如下图所示:

如果(i+u, j+v)落在A区,即u<0.5, v<0.5,则将左上角象素的灰度值赋给待求象素,同理,落在B区则赋予右上角的象素灰度值,落在C区则赋予左下角象素的灰度值,落在D区则赋予右下角象素的灰度值。

最邻近元法计算量较小,但可能会造成插值生成的图像灰度上的不连续,在灰度变化的地方可能出现明显的锯齿状。

2、双线性内插法

双线性内插法是利用待求象素四个邻象素的灰度在两个方向上作线性内插,如下图所示:

对于 (i, j+v),f(i, j) 到 f(i, j+1) 的灰度变化为线性关系,则有:

f(i, j+v) = [f(i, j+1) - f(i, j)] * v + f(i, j)

同理对于 (i+1, j+v) 则有:

f(i+1, j+v) = [f(i+1, j+1) - f(i+1, j)] * v + f(i+1, j)

从f(i, j+v) 到 f(i+1, j+v) 的灰度变化也为线性关系,由此可推导出待求象素灰度的计算式如下:

f(i+u, j+v) = (1-u) * (1-v) * f(i, j) + (1-u) * v * f(i, j+1) + u * (1-v) * f(i+1, j) + u * v * f(i+1, j+1)

双线性内插法的计算比最邻近点法复杂,计算量较大,但没有灰度不连续的缺点,结果基本令人满意。它具有低通滤波性质,使高频分量受损,图像轮廓可能会有一点模糊。

3、三次内插法

该方法利用三次多项式S(x)求逼近理论上最佳插值函数sin(x)/x, 其数学表达式为:

待求像素(x, y)的灰度值由其周围16个灰度值加权内插得到,如下图:

待求像素的灰度计算式如下:

f(x, y) = f(i+u, j+v) = ABC

其中:

三次曲线插值方法计算量较大,但插值后的图像效果最好。

最邻近插值(近邻取样法)、双线性内插值、三次卷积法 等插值算法对于旋转变换、错切变换、一般线性变换 和 非线性变换 都适用。

时间: 2024-12-30 16:57:24

图像插值的相关文章

数学之路-python计算实战(9)-机器视觉-图像插值仿射

插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpolation method: INTER_NEAREST - a nearest-neighbor interpolation INTER_LINEAR - a bilinear interpolation (used by default) INTER_AREA - resampling using

matlab彩色图像插值

软件是MATLAB R2014b 使用的是matlab中已有的函数imresize(); 彩色图像分别对R.G.B三个通道进行插值,之后融合.[imresize函数不用,可以直接插值] clear;clc;close all; Files=dir('D:\文件及下载相关\文档\MATLAB\postgraduate\Kodak\*.jpg'); N=length(Files); Names={}; for k=1:N Names{k}=Files(k).name; RGB=imread(['D:

图像插值缩放

简单实现, 仅限单通道图像 html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,big,cite,code,del,dfn,em,img,ins,kbd,q,s,samp,small,strike,strong,sub,sup,tt,var,b,u,i,center,dl,dt,dd,ol,ul,li,fieldset,form,label,legend

python图像插值

最近邻:选择离它所映射到的位置最近的输入像素的灰度值为插值结果. 最临近插值 图像的缩放很好理解,就是图像的放大和缩小.传统的绘画工具中,有一种叫做"放大尺"的绘画工具,画家常用它来放大图画.当然,在计算机上,我们不再需要用 放大尺去放大或缩小图像了,把这个工作交给程序来完成就可以了.下面就来讲讲计算机怎么来放大缩小图象:在本文中,我们所说的图像都是指点阵图,也就是用 一个像素矩阵来描述图像的方法,对于另一种图像:用函数来描述图像的矢量图,不在本文讨论之列. 越是简单的模型越适合用来举

2_Matlab图像的空间域变换操作

1. 目的:为了达到某种视觉效果,变换输入图像的像素位置,通过把输入图像的像素位置映射到一个新的位置以达到改变原图像显示效果的目的. 2. 操作包括: ? 图像插值(Interpolation) ? 图像缩放(Resizing) ? 图像旋转(Rotation) ? 图像剪切(Cropping) 3.图像差值操作 1)原因:在处理图像的过程中,比如对图像进行缩放及旋转,这时图像中每个像素的值都要发生变化.数字图像的坐标是整数,经过这些变换之后的坐标不一定是整数,使得输入图像的像素点经过空间域变换

图像处理复习整理(3.图像差值)

图像插值的困惑点: 之前一直不明白,差值需不需要考虑循环边界还是0边界什么的,但是最终发现,想错了,我们需要考虑的是已有像素点之间的块的应该有的像素值,所以说,所有的参数都有了. 图像差值主要解决的问题有: 奇异像素点处理 图像放大 一维线性差值: 一维三次差值: 双线性插值: 双立方差值(比较难) 双立方差值的目标函数: 所以有16个变量,所以偏微分,全微分,本身值都要算进去

常用的OpenCV函数速查

常用的OpenCV函数速查 1.cvLoadImage:将图像文件加载至内存: 2.cvNamedWindow:在屏幕上创建一个窗口: 3.cvShowImage:在一个已创建好的窗口中显示图像: 4.cvWaitKey:使程序暂停,等待用户触发一个按键操作: 5.cvReleaseImage:释放图像文件所分配的内存: 6.cvDestroyWindow:销毁显示图像文件的窗口: 7.cvCreateFileCapture:通过参数设置确定要读入的AVI文件: 8.cvQueryFrame:用

图像处理与计算机视觉基础,经典以及最近发展

*************************************************************************************************************** 在这里,我特别声明:本文章的源作者是   杨晓冬  (个人邮箱:[email protected]).原文的链接是 http://www.iask.sina.com.cn/u/2252291285/ish.版权归 杨晓冬 朋友所有. 我非常感谢原作者辛勤地编写本文章,并愿意共

图像处理与计算机视觉:图像处理与分析

1. Bilateral Filter Bilateral Filter俗称双边滤波器是一种简单实用的具有保持边缘作用的平缓滤波器,由Tomasi等在1998年提出.它现在已经发挥着重大作用,尤其是在HDR领域. [1998 ICCV] BilateralFiltering for Gray and Color Images [2008 TIP] AdaptiveBilateral Filter for Sharpness Enhancement and Noise Removal 2. Col