最短路径—Dijkstra算法和Floyd算法

Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画过程如下图

3.算法代码实现:

const int  MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];

int A[MAXUNM][MAXNUM];

void Dijkstra(int v0)
{
    bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中
      int n=MAXNUM;
    for(int i=1; i<=n; ++i)
    {
        dist[i] = A[v0][i];
        S[i] = false;                                // 初始都未用过该点
        if(dist[i] == MAXINT)
              prev[i] = -1;
        else
              prev[i] = v0;
     }
     dist[v0] = 0;
     S[v0] = true;   
    for(int i=2; i<=n; i++)
    {
         int mindist = MAXINT;
         int u = v0;                               // 找出当前未使用的点j的dist[j]最小值
         for(int j=1; j<=n; ++j)
            if((!S[j]) && dist[j]<mindist)
            {
                  u = j;                             // u保存当前邻接点中距离最小的点的号码
                  mindist = dist[j];
            }
         S[u] = true;
         for(int j=1; j<=n; j++)
             if((!S[j]) && A[u][j]<MAXINT)
             {
                 if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径
                 {
                     dist[j] = dist[u] + A[u][j];    //更新dist
                     prev[j] = u;                    //记录前驱顶点
                  }
              }
     }
}

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

2.算法描述

1)算法思想原理:

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

3.算法代码实现

typedef struct
{
    char vertex[VertexNum];                                //顶点表
    int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表
    int n,e;                                               //图中当前的顶点数和边数
}MGraph;
void Floyd(MGraph g)
{
   int A[MAXV][MAXV];
   int path[MAXV][MAXV];
   int i,j,k,n=g.n;
   for(i=0;i<n;i++)
      for(j=0;j<n;j++)
      {   
             A[i][j]=g.edges[i][j];
            path[i][j]=-1;
       }
   for(k=0;k<n;k++)
   {
        for(i=0;i<n;i++)
           for(j=0;j<n;j++)
               if(A[i][j]>(A[i][k]+A[k][j]))
               {                     A[i][j]=A[i][k]+A[k][j];
                     path[i][j]=k;
                }
     } } 

算法时间复杂度:O(n3)

时间: 2024-08-04 08:13:29

最短路径—Dijkstra算法和Floyd算法的相关文章

最短路径Dijkstra算法和Floyd算法整理、

转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹

最短路径-Dijkstra算法和Floyd算法

Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边. 问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径.(单源最短路径) 2.算法

最短路径—Dijkstra 算法和Floyd 算法

某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很困扰. 现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离. Input本题目包含多组数据,请处理到文件结束. 每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目.城镇分别以0-N-1编号. 接下来是M行道路信息.每

Dijkstra算法和Floyd算法的正确性证明

说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正 ------------------------------------------- Dijkstra算法和Floyd算法用于求解连通图中任意两个顶点之间的最短路径 Dijksra算法从一个顶点v0出发,每次为一个顶点vi确定到达v0的最小路径 Dijkstra算法用distance[i]记录顶点vi到v0的最短路径,用pat

最短路径:Dijkstra算法和Floyd算法

最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: 1.确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题. 3.确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径. 4.全局最短路径

最短路径—大话Dijkstra算法和Floyd算法

Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中.在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度.此外,每个顶点对应一个距离,S中的

Dijkstra算法和Floyd算法

一.简介 迪杰斯特拉(Dijkstra)算法和弗洛伊德(Flyod)算法均是用于求解有向图从一点到另外一个点最短路径. 二.Dijkstra 迪杰斯特拉算法也是图论中的明星算法,主要是其采用的动态规划思想,使其在数据结构.算法.离散数学乃至运筹学中都扮演重要的角色. 原文地址:https://www.cnblogs.com/lbrs/p/11986602.html

Dijkstra算法和Floyed算法

写的比较好的三篇文章 Floyed算法 最短路径-Dijkstra算法和Floyed算法 最短路径之Dijkstra算法和Floyed算法 哈哈,他山之石,可以攻玉 自己有心得,慢慢补充

1447.最短路径(dijstra算法和floyd算法)

题目描述: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? 输入: 输入包括多组数据.每组数据第一行是两个整数N.M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路.N=M=0表示输入结束.接下来M行,每行包括3个整数A,B,C(1<