数论部分第一节:素数与素性测试【详解】

数论部分第一节:素数与素性测试

一个数是素数(也叫质数),当且仅当它的约数只有两个——1和它本身。规定这两个约数不能相同,因此1不是素数。对素数的研究属于数论范畴,你可以看到许多数学家没事就想出一些符合某种性质的素数并称它为某某某素数。整个数论几乎就围绕着整除和素数之类的词转过去转过来。对于写代码的人来说,素数比想像中的更重要,Google一下BigPrime或者big_prime你总会发现大堆大堆用到了素数常量的程序代码。平时没事时可以记一些素数下来以备急用。我会选一些好记的素数,比如4567, 124567, 3214567, 23456789, 55566677, 1234567894987654321, 11111111111111111111111 (23个1)。我的手机号前10位是个素数。我的网站域名的ASCII码连起来(77 97 116 114 105 120 54 55 46 99 111 109)也是个素数。还有,我的某个MM的八位生日也是一个素数。每次写Hash函数之类的东西需要一个BigPrime常量时我就取她的生日,希望她能给我带来好运。偶尔我叫她素MM,没人知道是啥意思,她自己也不知道。
    素数有很多神奇的性质。我写5个在下面供大家欣赏。

1. 素数的个数无限多(不存在最大的素数)
  证明:反证法,假设存在最大的素数P,那么我们可以构造一个新的数2 * 3 * 5 * 7 * … * P + 1(所有的素数乘起来加1)。显然这个数不能被任一素数整除(所有素数除它都余1),这说明我们找到了一个更大的素数。

2. 存在任意长的一段连续数,其中的所有数都是合数(相邻素数之间的间隔任意大)
  证明:当0<a<=n时,n!+a能被a整除。长度为n-1的数列n!+2, n!+3, n!+4, …, n!+n中,所有的数都是合数。这个结论对所有大于1的整数n都成立,而n可以取到任意大。

3. 所有大于2的素数都可以唯一地表示成两个平方数之差。
  证明:大于2的素数都是奇数。假设这个数是2n+1。由于(n+1)^2=n^2+2n+1,(n+1)^2和n^2就是我们要找的两个平方数。下面证明这个方案是唯一的。如果素数p能表示成a^2-b^2,则p=a^2-b^2=(a+b)(a-b)。由于p是素数,那么只可能a+b=p且a-b=1,这给出了a和b的唯一解。

4. 当n为大于2的整数时,2^n+1和2^n-1两个数中,如果其中一个数是素数,那么另一个数一定是合数。
  证明:2^n不能被3整除。如果它被3除余1,那么2^n-1就能被3整除;如果被3除余2,那么2^n+1就能被3整除。总之,2^n+1和2^n-1中至少有一个是合数。

5. 如果p是素数,a是小于p的正整数,那么a^(p-1) mod p = 1。
  这个证明就有点麻烦了。
    首先我们证明这样一个结论:如果p是一个素数的话,那么对任意一个小于p的正整数a,a,
2a, 3a, …, (p-1)a除以p的余数正好是一个1到p-1的排列。例如,5是素数,3, 6, 9, 12除以5的余数分别为3, 1,
4, 2,正好就是1到4这四个数。
    反证法,假如结论不成立的话,那么就是说有两个小于p的正整数m和n使得na和ma除以p的余数相同。不妨假设n>m,则p可以整除a(n-m)。但p是素数,那么a和n-m中至少有一个含有因子p。这显然是不可能的,因为a和n-m都比p小。
    用同余式表述,我们证明了:
(p-1)! ≡ a * 2a * 3a * … * (p-1)a (mod p)
    也即:
(p-1)! ≡ (p-1)! * a^(p-1) (mod p)
    两边同时除以(p-1)!,就得到了我们的最终结论:
1 ≡ a^(p-1) (mod p)

可惜最后这个定理最初不是我证明的。这是大数学家Fermat证明的,叫做Fermat小定理(Fermat‘s Little
Theorem)。Euler对这个定理进行了推广,叫做Euler定理。Euler一生的定理太多了,为了和其它的“Euler定理”区别开来,有些地方叫做Fermat小定理的Euler推广。Euler定理中需要用一个函数f(m),它表示小于m的正整数中有多少个数和m互素(两个数只有公约数1称为互素)。为了方便,我们通常用记号φ(m)来表示这个函数(称作Euler函数)。Euler指出,如果a和m互素,那么a^φ(m)
≡ 1 (mod
m)。可以看到,当m为素数时,φ(m)就等于m-1(所有小于m的正整数都与m互素),因此它是Fermat小定理的推广。定理的证明和Fermat小定理几乎相同,只是要考虑的式子变成了所有与m互素的数的乘积:m_1
* m_2 … m_φ(m) ≡ (a * m_1)(a * m_2) … (a * m_φ(m)) (mod
m)。我为什么要顺便说一下Euler定理呢?因为下面一句话可以增加我网站的PV:这个定理出现在了The Hundred Greatest Theorems里。

谈到Fermat小定理,数学历史上有很多误解。很长一段时间里,人们都认为Fermat小定理的逆命题是正确的,并且有人亲自验证了a=2,

p<300的所有情况。国外甚至流传着一种说法,认为中国在孔子时代就证明了这样的定理:如果n整除2^(n-1)-1,则n就是素数。后来某个英国学者进行考证后才发现那是因为他们翻译中国古文时出了错。1819年有人发现了Fermat小定理逆命题的第一个反例:虽然2的340次方除以341余1,但341=11*31。后来,人们又发现了561,
645,
1105等数都表明a=2时Fermat小定理的逆命题不成立。虽然这样的数不多,但不能忽视它们的存在。于是,人们把所有能整除2^(n-1)-1的合数n叫做伪素数(pseudoprime),意思就是告诉人们这个素数是假的。
    不满足2^(n-1)
mod n =
1的n一定不是素数;如果满足的话则多半是素数。这样,一个比试除法效率更高的素性判断方法出现了:制作一张伪素数表,记录某个范围内的所有伪素数,那么所有满足2^(n-1)
mod n = 1且不在伪素数表中的n就是素数。之所以这种方法更快,是因为我们可以使用二分法快速计算2^(n-1) mod n
的值,这在计算机的帮助下变得非常容易;在计算机中也可以用二分查找有序数列、Hash表开散列、构建Trie树等方法使得查找伪素数表效率更高。
    有人自然会关心这样一个问题:伪素数的个数到底有多少?换句话说,如果我只计算2^(n-1)
mod
n的值,事先不准备伪素数表,那么素性判断出错的概率有多少?研究这个问题是很有价值的,毕竟我们是OIer,不可能背一个长度上千的常量数组带上考场。统计表明,在前10亿个自然数中共有50847534个素数,而满足2^(n-1)
mod n =
1的合数n有5597个。这样算下来,算法出错的可能性约为0.00011。这个概率太高了,如果想免去建立伪素数表的工作,我们需要改进素性判断的算法。

最简单的想法就是,我们刚才只考虑了a=2的情况。对于式子a^(n-1) mod
n,取不同的a可能导致不同的结果。一个合数可能在a=2时通过了测试,但a=3时的计算结果却排除了素数的可能。于是,人们扩展了伪素数的定义,称满足a^(n-1)
mod n = 1的合数n叫做以a为底的伪素数(pseudoprime to base
a)。前10亿个自然数中同时以2和3为底的伪素数只有1272个,这个数目不到刚才的1/4。这告诉我们如果同时验证a=2和a=3两种情况,算法出错的概率降到了0.000025。容易想到,选择用来测试的a越多,算法越准确。通常我们的做法是,随机选择若干个小于待测数的正整数作为底数a进行若干次测试,只要有一次没有通过测试就立即把
这个数扔回合数的世界。这就是Fermat素性测试。
    人们自然会想,如果考虑了所有小于n的底数a,出错的概率是否就可以降到0呢?没想到的是,居然就有这样的合数,它可以通过所有a的测试(这个说法不准确,详见我在地核楼层的回复)。Carmichael第一个发现这样极端的伪素数,他把它们称作Carmichael数。你一定会以为这样的数一定很大。错。第一个Carmichael数小得惊人,仅仅是一个三位数,561。前10亿个自然数中Carmichael数也有600个之多。Carmichael数的存在说明,我们还需要继续加强素性判断的算法。

Miller和Rabin两个人的工作让Fermat素性测试迈出了革命性的一步,建立了传说中的Miller-Rabin素性测试算法。新的测试基于下面的定理:如果p是素数,x是小于p的正整数,且x^2
mod p = 1,那么要么x=1,要么x=p-1。这是显然的,因为x^2 mod p =
1相当于p能整除x^2-1,也即p能整除(x+1)(x-1)。由于p是素数,那么只可能是x-1能被p整除(此时x=1)或x+1能被p整除(此时x=p-1)。
    我们下面来演示一下上面的定理如何应用在Fermat素性测试上。前面说过341可以通过以2为底的Fermat测试,因为2^340
mod 341=1。如果341真是素数的话,那么2^170 mod 341只可能是1或340;当算得2^170 mod
341确实等于1时,我们可以继续查看2^85除以341的结果。我们发现,2^85 mod
341=32,这一结果摘掉了341头上的素数皇冠,面具后面真实的嘴脸显现了出来,想假扮素数和我的素MM交往的企图暴露了出来。
    这就是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成d*2^r(其中d是一个奇数)。那么我们需要计算的东西就变成了a的d*2^r次方除以n的余数。于是,a^(d
* 2^(r-1))要么等于1,要么等于n-1。如果a^(d * 2^(r-1))等于1,定理继续适用于a^(d *
2^(r-2)),这样不断开方开下去,直到对于某个i满足a^(d * 2^i) mod n = n-1或者最后指数中的2用完了得到的a^d
mod n=1或n-1。这样,Fermat小定理加强为如下形式:
    尽可能提取因子2,把n-1表示成d*2^r,如果n是一个素数,那么或者a^d
mod n=1,或者存在某个i使得a^(d*2^i) mod n=n-1 ( 0<=i<r ) (注意i可以等于0,这就把a^d
mod n=n-1的情况统一到后面去了)
    Miller-Rabin素性测试同样是不确定算法,我们把可以通过以a为底的Miller-Rabin测试的合数称作以a为底的强伪素数(strong
pseudoprime)。第一个以2为底的强伪素数为2047。第一个以2和3为底的强伪素数则大到1 373 653。
    Miller-Rabin算法的代码也非常简单:计算d和r的值(可以用位运算加速),然后二分计算a^d
mod
n的值,最后把它平方r次。程序的代码比想像中的更简单,我写一份放在下边。虽然我已经转C了,但我相信还有很多人看不懂C语言。我再写一次Pascal吧。函数IsPrime返回对于特定的底数a,n是否是能通过测试。如果函数返回False,那说明n不是素数;如果函数返回True,那么n极有可能是素数。注意这个代码的数据范围限制在longint,你很可能需要把它们改成int64或高精度计算。

 1 function pow( a, d, n:longint ):longint;
 2 begin
 3    if d=0 then exit(1)
 4    else if d=1 then exit(a)
 5    else if d and 1=0 then exit( pow( a*a mod n, d div 2, n) mod n)
 6    else exit( (pow( a*a mod n, d div 2, n) * a) mod n);
 7 end;
 8
 9 function IsPrime( a,n:longint ):boolean;
10 var
11    d,t:longint;
12 begin
13    if n=2 then exit(true);
14    if (n=1) or (n and 1=0) then exit(false);
15    d:=n-1;
16    while d and 1=0 do d:=d shr 1;
17    t:=pow( a, d, n );
18    while ( d<>n-1 ) and ( t<>1 ) and ( t<>n-1 ) do
19    begin
20       t:=(t * t)mod n;
21       d:=d shl 1;
22    end;
23    exit( (t=n-1) or (d and 1=1) );
24 end;

对于大数的素性判断,目前Miller-Rabin算法应用最广泛。一般底数仍然是随机选取,但当待测数不太大时,选择测试底数就有一些技巧了。比如,如果被测数小于4 759 123 141,那么只需要测试三个底数2, 7和61就足够了。当然,你测试的越多,正确的范围肯定也越大。如果你每次都用前7个素数(2, 3, 5, 7, 11, 13和17)进行测试,所有不超过341 550 071 728 320的数都是正确的。如果选用2, 3, 7, 61和24251作为底数,那么10^16内唯一的强伪素数为46 856 248 255 981。这样的一些结论使得Miller-Rabin算法在OI中非常实用。通常认为,Miller-Rabin素性测试的正确率可以令人接受,随机选取k个底数进行测试算法的失误率大概为4^(-k)。

Miller-Rabin算法是一个RP算法。RP是时间复杂度的一种,主要针对判定性问题。一个算法是RP算法表明它可以在多项式的时间里完成,对于答案为否定的情形能够准确做出判断,但同时它也有可能把对的判成错的(错误概率不能超过1/2)。RP算法是基于随机化的,因此多次运行该算法可以降低错误率。还有其它的素性测试算法也是概率型的,比如Solovay-Strassen算法。另外一些素性测试算法则需要预先知道一些辅助信息(比如n-1的质因子),或者需要待测数满足一些条件(比如待测数必须是2^n-1的形式)。前几年AKS算法轰动世界,它是第一个多项式的、确定的、无需其它条件的素性判断算法。当时一篇论文发表出来,题目就叫PRIMES is in P,然后整个世界都疯了,我们班有几个MM那天还来了初潮。算法主要基于下面的事实:n是一个素数当且仅当(x-a)^n≡(x^n-a) (mod n)。注意这个x是多项式中的未知数,等式两边各是一个多项式。举个例子来说,当a=1时命题等价于如下结论:当n是素数时,杨辉三角的第n+1行除两头的1以外其它的数都能被n整除。

时间: 2024-12-16 01:18:12

数论部分第一节:素数与素性测试【详解】的相关文章

iOS开发——实战篇&amp;Xcode 7真机测试详解

Xcode 7真机测试详解 1.准备 注意:一定要让你的真机设备的系统版本和app的系统版本想对应,如果不对应就会出现一个很常见的问题:could not find developer disk image 首先,准备好下面的设备机相关软件 MAC版本:OSX10.10.4 Xcode版本:Xcode7 beta5(点击下载) 真机设备:iPad Air(iOS 8.1.3)/iphone 6 2.首先先安装Xcode7,并且运行Xcode,点击左上角菜单Xcode -> Preferences

第四课-第一讲04_01_Linux用户管理命令详解

第四课-第一讲04_01_Linux用户管理命令详解1.useradd [option] USERNAME-u UID(大于500且没使用过的)-c 用户说明,COMMENT-d 家目录 HOME-g GID 基本组ID-G GID,....附加值ID-s 默认shell,指定要用的shell的路径-m(常和-k一起用) 强制指定家目录-M 不创建用户家目录环境变量:PATHHISTSIZESHELL:保持当前用户的默认shell的路径/etc/shells:指定了当前系统可用的安全shell/

linux--ab压力测试详解

简介     ab是Apache自带的压力测试工具,全称是ApacheBench,ab是Apache的一个安装组件,所以需要安装Apache后才可以使用,该命令位于Apache安装目录下的bin文件夹中,ab是专门用于HTTP Server的benchmark testing,可以同时模拟多个并发请求,ab的设计意图是描绘当前所安装的Apache的执行性能,主要是显示所安装的Apache每秒可以处理多少个请求,ab同微软的WAST.HP的LoadRunner.QALoad等比起来,它要方便易用得

小甲鱼PE详解之区块表(节表)和区块(节)续(PE详解05)

这一讲我们结合实例来谈谈区块表的定义以及各个属性的含义. 首先,我们先用之前学过的一点知识在二进制文件中手动翻找区块表,这样做的好处是可以使你很快的对PE结构牢记于心.学来的东西就是能用的东西,不能用的理论是空谈,是瞎扯. (具体过程演示大伙可参考小甲鱼的视频教程:<解密系列>系统篇.第五讲) 这里我们经过千辛万苦终于找到了我们的区块表了(当然将来我会教大家写一个自己的工具,让工具去找,现在让大家自己动手是为了增强感觉!),现在我们联系上一章节提到的区块表的结构对各个成员进行详细的分析: ty

php set_time_limit()用法测试详解

在php中set_time_limit函数是用来限制页面执行时间的,如我想把一个php页面的执行时间定义为5秒就可以set_time_limit(5)了. 一个php脚本通过crontab每5分钟执行一次,考虑到脚本执行时间会超过5分钟,特意用set_time_limit(290)来控制脚本在290秒退出.某天突然发现后台有多个该脚本的进程在执行,也就是说set_time_limit(290)没有起作用.为了证明,特意使用如下代码测试.  代码如下 复制代码 set_time_limit(5);

5G/NR OTA (Over The Air) 测试详解

原文链接:http://www.sharetechnote.com/html/5G/5G_OTA.html 1 什么是OTA (Over The Air) OTA代表Over The Air.为了使用任何测试设备对设备进行测试,您需要一种将设备连接到测试设备的方法.OTA是一种将设备连接到测试设备的方法.大致有两种连接方法,如下所示.一个是Conductive,另一个是Radiative(或OTA).简而言之,OTA是通过一对天线(发射天线和接收天线)的连接方法. 导电 辐射/ OTA 实际上O

素数判定Miller_Rabin 算法详解

最简单直观简单的素数判定方法就是试除法.对于判断数n是否是素数,我们从2开始一直到sqrt(n).如果找到一个因子则判断n不是素数,否则是素数.代码如下: bool isPrime( long long n ) { for(long long i = 2; i*i <= n; i++) { if(n%i == 0) return false; } return true; } 如果要找到成1~n的所有素数那么这个时间代价就变为O(n^2),很多时候是不可接受的.所以随着学习的深入,我们了解到了素

Android单元测试与模拟测试详解

测试与基本规范 为什么需要测试? 为了稳定性,能够明确的了解是否正确的完成开发. 更加易于维护,能够在修改代码后保证功能不被破坏. 集成一些工具,规范开发规范,使得代码更加稳定( 如通过 phabricator differential 发diff时提交需要执行的单元测试,在开发流程上就可以保证远端代码的稳定性). 2. 测什么? 一般单元测试: 列出想要测试覆盖的异常情况,进行验证. 性能测试. 模拟测试: 根据需求,测试用户真正在使用过程中,界面的反馈与显示以及一些依赖系统架构的组件的应用测

Xcode 7真机测试详解

1.准备 注意:一定要让你的真机设备的系统版本和app的系统版本想对应,如果不对应就会出现一个很常见的问题:could not find developer disk image 首先,准备好下面的设备机相关软件 MAC版本:OSX10.10.4 Xcode版本:Xcode7 beta5(点击下载) 真机设备:iPad Air(iOS 8.1.3)/iphone 6 2.首先先安装Xcode7,并且运行Xcode,点击左上角菜单Xcode -> Preferences. 3.设置好版本 4.下载