hadoop作业调优参数整理及原理

1 Map side tuning参数

1.1 MapTask运行内部原理

当map
task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘。这中间的过程比较复杂,并且利用到了内存buffer来进行已经产生的部分结果的缓存,并在内存buffer中进行一些预排序来优化整个map的性能。如上图所示,每一个map都会对应存在一个内存buffer(MapOutputBuffer,即上图的buffer
in
memory),map会将已经产生的部分结果先写入到该buffer中,这个buffer默认是100MB大小,但是这个大小是可以根据job提交时的参数设定来调整的,该参数即为:io.sort.mb(mapred-default.xml中
)。当map的产生数据非常大时,并且把io.sort.mb调大,那么map在整个计算过程中spill的次数就势必会降低,map
task对磁盘的操作就会变少,如果map
tasks的瓶颈在磁盘上,这样调整就会大大提高map的计算性能。map做sort和spill的内存结构如下如所示:

  map在运行过程中,不停的向该buffer中写入已有的计算结果,但是该buffer并不一定能将全部的map输出缓存下来,当map输出超出一定阈值(比如100M),那么map就必须将该buffer中的数据写入到磁盘中去,这个过程在mapreduce中叫做spill。map并不是要等到将该buffer全部写满时才进行spill,因为如果全部写满了再去写spill,势必会造成map的计算部分等待buffer释放空间的情况。所以,map其实是当buffer被写满到一定程度(比如80%)时,就开始进行spill。这个阈值也是由一个job的配置参数来控制,即io.sort.spill.percent(mapred-default.xml中),默认为0.80或80%。这个参数同样也是影响spill频繁程度,进而影响map
task运行周期对磁盘的读写频率的。但非特殊情况下,通常不需要人为的调整。调整io.sort.mb对用户来说更加方便。

  当map
task的计算部分全部完成后,如果map有输出,就会生成一个或者多个spill文件,这些文件就是map的输出结果。map在正常退出之前,需要将这些spill合并(merge)成一个,所以map在结束之前还有一个merge的过程。merge的过程中,有一个参数可以调整这个过程的行为,该参数为:io.sort.factor(mapred-default.xml中)。该参数默认为10。它表示当merge
spill文件时,最多能有多少并行的stream向merge文件中写入。比如如果map产生的数据非常的大,产生的spill文件大于10,而io.sort.factor使用的是默认的10,那么当map计算完成做merge时,就没有办法一次将所有的spill文件merge成一个,而是会分多次,每次最多10个stream。这也就是说,当map的中间结果非常大,调大io.sort.factor,有利于减少merge次数,进而减少map对磁盘的读写频率,有可能达到优化作业的目的。

  当job指定了combiner的时候,我们都知道map介绍后会在map端根据combiner定义的函数将map结果进行合并。运行combiner函数的时机有可能会是merge完成之前,或者之后,这个时机可以由一个参数控制,即min.num.spill.for.combine(default
3,没找到在哪个配置文件中),当job中设定了combiner,并且spill数最少有3个的时候,那么combiner函数就会在merge产生结果文件之前运行。通过这样的方式,就可以在spill非常多需要merge,并且很多数据需要做combine的时候,减少写入到磁盘文件的数据数量,同样是为了减少对磁盘的读写频率,有可能达到优化作业的目的。

  减少中间结果读写进出磁盘的方法不止这些,还有就是压缩。也就是说map的中间,无论是spill的时候,还是最后merge产生的结果文件,都是可以压缩的。压缩的好处在于,通过压缩减少写入读出磁盘的数据量。对中间结果非常大,磁盘速度成为map执行瓶颈的job,尤其有用。控制map中间结果是否使用压缩的参数为:mapred.compress.map.output(true/false,mapred-default.xml中)。将这个参数设置为true时,那么map在写中间结果时,就会将数据压缩后再写入磁盘,读结果时也会采用先解压后读取数据。这样做的后果就是:写入磁盘的中间结果数据量会变少,但是cpu会消耗一些用来压缩和解压。所以这种方式通常适合job中间结果非常大,瓶颈不在cpu,而是在磁盘的读写的情况。说的直白一些就是用cpu换IO。根据观察,通常大部分的作业cpu都不是瓶颈,除非运算逻辑异常复杂。所以对中间结果采用压缩通常来说是有收益的。以下是一个wordcount中间结果采用压缩和不采用压缩产生的map中间结果本地磁盘读写的数据量对比:

map中间结果不压缩:

map中间结果压缩:

可以看出,同样的job,同样的数据,在采用压缩的情况下,map中间结果能缩小将近10倍,如果map的瓶颈在磁盘,那么job的性能提升将会非常可观。

当采用map中间结果压缩的情况下,用户还可以选择压缩时采用哪种压缩格式进行压缩,现在hadoop支持的压缩格式有:GzipCodec,LzoCodec,BZip2Codec,LzmaCodec等压缩格式。

通常来说,想要达到比较平衡的cpu和磁盘压缩比,LzoCodec比较适合。但也要取决于job的具体情况。用户若想要自行选择中间结果的压缩算法,可以设置配置参数:mapred.map.output.compression.codec=org.apache.hadoop.io.compress.DefaultCodec(mapred-default.xml)或者其他用户自行选择的压缩方式。

1.2 Map side相关参数调优

2 Reduce 端调优参数

2.1 ReduceTask运行内部原理

  reduce的运行是分成三个阶段的。分别为copy->sort->reduce。由于job的每一个map都会根据reduce(n)数将数据分成map
输出结果分成n个partition,所以map的中间结果中是有可能包含每一个reduce需要处理的部分数据的。所以,为了优化reduce的执行时间,hadoop中是等job的第一个map结束后,所有的reduce就开始尝试从完成的map中下载该reduce对应的partition部分数据。这个过程就是通常所说的shuffle,也就是copy过程。

  Reduce
task在做shuffle时,实际上就是从不同的已经完成的map上去下载属于自己这个reduce的部分数据,由于map通常有许多个,所以对一个reduce来说,下载也可以是并行的从多个map下载,这个并行度是可以调整的,调整参数为:mapred.reduce.parallel.copies(default
5)。默认情况下,每个只会有5个并行的下载线程在从map下数据,如果一个时间段内job完成的map有100个或者更多,那么reduce也最多只能同时下载5个map的数据,所以这个参数比较适合map很多并且完成的比较快的job的情况下调大,有利于reduce更快的获取属于自己部分的数据。

  Reduce的每一个下载线程在下载某个map数据的时候,有可能因为那个map中间结果所在机器发生错误,或者中间结果的文件丢失,或者网络瞬断等等情况,这样reduce的下载就有可能失败,所以reduce的下载线程并不会无休止的等待下去,当一定时间后下载仍然失败,那么下载线程就会放弃这次下载,并在随后尝试从另外的地方下载(因为这段时间map可能重跑)。所以reduce下载线程的这个最大的下载时间段是可以调整的,调整参数为:mapred.reduce.copy.backoff(default
300秒)。如果集群环境的网络本身是瓶颈,那么用户可以通过调大这个参数来避免reduce下载线程被误判为失败的情况。不过在网络环境比较好的情况下,没有必要调整。通常来说专业的集群网络不应该有太大问题,所以这个参数需要调整的情况不多。

  Reduce将map结果下载到本地时,同样也是需要进行merge的,所以io.sort.factor的配置选项同样会影响reduce进行merge时的行为,该参数的详细介绍上文已经提到,当发现reduce在shuffle阶段iowait非常的高的时候,就有可能通过调大这个参数来加大一次merge时的并发吞吐,优化reduce效率。

  Reduce在shuffle阶段对下载来的map数据,并不是立刻就写入磁盘的,而是会先缓存在内存中,然后当使用内存达到一定量的时候才刷入磁盘。这个内存大小的控制就不像map一样可以通过io.sort.mb来设定了,而是通过另外一个参数来设置:mapred.job.shuffle.input.buffer.percent(default
0.7),这个参数其实是一个百分比,意思是说,shuffile在reduce内存中的数据最多使用内存量为:0.7 × maxHeap of
reduce task。也就是说,如果该reduce
task的最大heap使用量(通常通过mapred.child.java.opts来设置,比如设置为-Xmx1024m)的一定比例用来缓存数据。默认情况下,reduce会使用其heapsize的70%来在内存中缓存数据。如果reduce的heap由于业务原因调整的比较大,相应的缓存大小也会变大,这也是为什么reduce用来做缓存的参数是一个百分比,而不是一个固定的值了。

  假设mapred.job.shuffle.input.buffer.percent为0.7,reduce task的max
heapsize为1G,那么用来做下载数据缓存的内存就为大概700MB左右,这700M的内存,跟map端一样,也不是要等到全部写满才会往磁盘刷的,而是当这700M中被使用到了一定的限度(通常是一个百分比),就会开始往磁盘刷。这个限度阈值也是可以通过job参数来设定的,设定参数为:mapred.job.shuffle.merge.percent(default
0.66)。如果下载速度很快,很容易就把内存缓存撑大,那么调整一下这个参数有可能会对reduce的性能有所帮助。

  当reduce将所有的map上对应自己partition的数据下载完成后,就会开始真正的reduce计算阶段(中间有个sort阶段通常时间非常短,几秒钟就完成了,因为整个下载阶段就已经是边下载边sort,然后边merge的)。当reduce
task真正进入reduce函数的计算阶段的时候,有一个参数也是可以调整reduce的计算行为。也就是:mapred.job.reduce.input.buffer.percent(default
0.0)。由于reduce计算时肯定也是需要消耗内存的,而在读取reduce需要的数据时,同样是需要内存作为buffer,这个参数是控制,需要多少的内存百分比来作为reduce读已经sort好的数据的buffer百分比。默认情况下为0,也就是说,默认情况下,reduce是全部从磁盘开始读处理数据。如果这个参数大于0,那么就会有一定量的数据被缓存在内存并输送给reduce,当reduce计算逻辑消耗内存很小时,可以分一部分内存用来缓存数据,反正reduce的内存闲着也是闲着。

2.2 Reduce side相关参数调优

本文转载自:http://www.tbdata.org/archives/1470

hadoop作业调优参数整理及原理,布布扣,bubuko.com

时间: 2024-10-07 10:39:01

hadoop作业调优参数整理及原理的相关文章

hadoop作业调优参数整理及原理(主要为shuffle过程)

1 Map side tuning参数 1.1 MapTask运行内部原理 当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘.这中间的过程比较复杂,并且利用到了内存buffer来进行已经产生的 部分结果的缓存,并在内存buffer中进行一些预排序来优化整个map的性能.如上图所示,每一个map都会对应存在一个内存 buffer(MapOutputBuffer,即上图的buffer in memory),map会将已经产生的部分结果先写入到该buffer中,这

Hadoop实战-中高级部分 之 Hadoop作业调优参数调整及原理

第一部分:core-site.xml •core-site.xml为Hadoop的核心属性文件,参数为Hadoop的核心功能,独立于HDFS与MapReduce. 参数列表 •fs.default.name •默认值 file:/// •说明:设置Hadoop  namenode的hostname及port,预设是Standalone mode,如果是伪分布式文件系统要设置成 hdfs://localhost:9000,如果使用集群模式则配置为 hdfs://hostname:9000 •had

JVM性能调优2:JVM性能调优参数整理

本系列包括: JVM性能调优1:JVM性能调优理论及实践(收集整理) JVM性能调优2:JVM性能调优参数整理 JVM性能调优3:JVM_堆溢出分析过程和命令 JVm性能调优4:GC日志分析 JVM性能调优5:Heap堆分析方法  序号 参数名 说明 JDK 默认值 使用过 1 JVM执行模式 2 -client -server 设置该JVM运行与Client 或者Server Hotspot模式,这两种模式从本质上来说是在JVM中运行不同的JIT(运行时编译模块)代码,并且两者在JVM内部

Hbase集群搭建及所有配置调优参数整理及API代码运行

最近为了方便开发,在自己的虚拟机上搭建了三节点的Hadoop集群与Hbase集群,hadoop集群的搭建与zookeeper集群这里就不再详细说明,原来的笔记中记录过.这里将hbase配置参数进行相应整理,方便日后使用. 首先vi ~/.bash_profile将hbase的环境变量进行配置,最后source ~./bash_profile使之立即生效 1.修改hbase-env.sh 由于我使用的是外置的zookeeper,所以这里HBASE_MANAGES_ZK设置为,设置参数: # The

JVM调优参数整理

参数名 含义 默认值 描述 -Xms 初始化堆大小 物理内存的1/64(<1G) 默认空余堆内存比例(MinHeapFreeRatio)小于40%的时候JVM就会增大堆内存直到-Xmx限制 -Xmx 最大堆内存 物理内存的1/4 默认空余堆内存比例(MinHeapFreeRatio)大于70%时候JVM就会减小堆内存直到-Xmx最小值 -Xmn 年轻代大小 增大年轻代就会减小老年代,Sun公司推荐大小为堆的3/8 -XX:PermSize 永久代初始值 物理内存的1/64(<1G) -XX:M

Hadoop调优参数总结

Map端调优参数 属性名称 类型 默认值 说明 io.sort.mb int 100 排序map输出时所使用的内存缓冲区大小,以M为单位.当节点内存较大时,可调高该参数,以减少磁盘写入次数. io.sort.record.percent float 0.05 用作存储map输出(io.sort.mb)记录的比例.剩余的空间用来存储map输出记录本身 io.sort.spill.percent float 0.80 map输出开始写磁盘的阈值. io.sort.factor int 10 map输

转:Dubbo性能调优参数及原理

from: https://www.cnblogs.com/cyfonly/p/8987043.html 文是针对 Dubbo 协议调用的调优指导,详细说明常用调优参数的作用域及源码. Dubbo调用模型 常用性能调优参数 参数名 作用范围 默认值 说明 备注 threads provider 200 业务处理线程池大小   iothreads provider CPU+1 io线程池大小   queues provider 0 线程池队列大小,当线程池满时,排队等待执行的队列大小, 建议不要设

数据倾斜是多么痛?spark作业调优秘籍

目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么?      CSDN日报20170703--<从高考到程序员--我一直在寻找答案>      [直播]探究Linux的总线.设备.驱动模型! 数据倾斜是多么痛?spark作业调优秘籍 2017-06-27 13:28 39人阅读 评论(0) 收藏 举报  分类: Spark(124)  原文:https://mp.weixin.qq.com/s?__biz=MzI5OTAwMTM1MQ==&mid=2456

Hadoop性能调优总结(一)

目的 随着企业要处理的数据量越来越大,Hadoop运行在越来越多的集群上,同时MapReduce由于具有高可扩展性和容错性,已经逐步广泛使用开来.因此也产生很多问题,尤其是性能方面的问题.这里从管理员角度和用户角度分别介绍Hadoop性能优化的一些体会. 本文是基于Hadoop 0.20.x(包括1x),cdh 3及以上版本做介绍.(Hadoop的版本比较杂乱,具体可以看参考部分链接介绍). 管理员角度 1.    硬件选择: Master机器配置的选择要高于slave机器配置的选择. 2.