package java.util; // ArrayList源码分析,ArrayList即使用数组实现的列表,是一种线性表 public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * Default initial capacity. * 默认初始化容量 */ private static final int DEFAULT_CAPACITY = 10; /** * Shared empty array instance used for empty instances. * 共享的数组实例,供所有空列表(size==0,即elementData的长度为0)的实例使用 * 作用是提供一个标记指针,判断当前列表是否为空列表 */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * Shared empty array instance used for default sized empty instances. We * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when * first element is added. * 共享的空数组实例,供所有默认长度空列表(通过构造函数ArrayList()创建的)实例使用. * 对比DEFAULTCAPACITY_EMPTY_ELEMENTDATA和EMPTY_ELEMENTDATA,可以获得当第一个 * 元素被添加至列表时,需要扩充多少内存空间. * 作用是提供一个标记指针,判断当前列表是否为一个默认容量的空数组 */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * The array buffer into which the elements of the ArrayList are stored. * The capacity of the ArrayList is the length of this array buffer. Any * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA * will be expanded to DEFAULT_CAPACITY when the first element is added. * 列表元素所存储的缓冲数组. * 列表的容量即该缓冲数组的长度. * 所有 elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA 的空列表,当第一个 * 元素被添加时,会将elementData的容量扩充为默认容量 DEFAULT_CAPACITY */ // non-private to simplify nested class access // 非私有,简化嵌套类访问权限. transient用来表示该域不是该对象串行化的一部分 transient Object[] elementData; /** * The size of the ArrayList (the number of elements it contains). * 列表的大小(列表所存储元素的总和) * @serial */ private int size; /** * Constructs an empty list with the specified initial capacity. * 构造一个指定初始容量的空列表 * * @param initialCapacity the initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity * is negative */ public ArrayList(int initialCapacity) { //当初始化容量参数值大于0时,为elementData分配相应的内存空间 if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; //当初始化容量参数值为0时,elementData DEFAULTCAPACITY_EMPTY_ELEMENTDATA 空数组 } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; //当初始化容量参数小于0时,抛出异常 } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /** * Constructs an empty list with an initial capacity of ten. * 构造一个初始容量为10的空列表 */ public ArrayList() { //elementData 置成EMPTY_ELEMENTDATA 空数组 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * Constructs a list containing the elements of the specified * collection, in the order they are returned by the collection‘s * iterator. * 通过一个包含一些元素的指定的集合,通过迭代器按顺序地取出这些元素,用来构造一个列表 * * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public ArrayList(Collection<? extends E> c) { //调用集合c.toArray,方法获得一个元素素组 elementData = c.toArray(); //将列表大小置为elmentData的长度,如果长度不为0 if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) /* 这个注释比较有意思了,意思是 c.toArray方法可能返回一个错误的Object[]. * 这是JDK的一个BUG JDK-6260652 * 在调用Arrays.asList("Larry", "Moe", "Curly")时,返回的并不是java.util.Arralist * 而是Arrays的静态嵌套类 java.util.Arrays$ArrayList的实例 * java.util.Arrays$ArrayList实现了Collection接口, * 调用java.util.Arrays$ArrayList.toArray()时,可能会返回错误的Object[] * 源码: (注意这里的ArrayList 为Arrays的静态嵌套类,与java.util.Arralist不同) * //Arrays: * public static <T> List<T> asList(T... a) { * return new ArrayList<>(a); * } * * //Arrays.ArrayList * ArrayList(E[] array) { * //直接将成员变量a置成了array * a = Objects.requireNonNull(array); * } * * public Object[] toArray(){ * //toArray的时候,也只是将传进来的数组拷贝一份给返回了,虽说向上转型为Object[] * //但返回数组仍然会为原始的数组类型,所以elementData.getClass()!= Object[].class * //若所以elementData数组为String[]类型的数组,此时elementData.getClass()==String[].class * //那么执行elementData[i] = new Object();时 * //是无法将Object向下转型为String存放的,会抛出ArrayStoreException异常 * return a.clone(); * } * 为了防止上述问题,在elementData.getClass()!= Object[].class时,用Arrays.copyOf方法,将 * elementData转换为一个真正的Object数组 */ if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } //如果长度为0 else { // replace with empty array. // elementData替换为空数组EMPTY_ELEMENTDATA this.elementData = EMPTY_ELEMENTDATA; } } /** * Trims the capacity of this <tt>ArrayList</tt> instance to be the * list‘s current size. An application can use this operation to minimize * the storage of an <tt>ArrayList</tt> instance. * 将列表容量修剪为列表的当前大小。该操作可将ArrayList实例的占用的存储空间减小到最少. */ public void trimToSize() { /* modCount为AbstractList的一个成员变量,用来标记列表被修改的次数,实现fast-fail机制 * fast-fail--快速失败,它是Java集合的一种错误检测机制。 * 当多个线程对集合进行结构上的改变的操作时,有可能会产生fail-fast机制。 * 记住是有可能,而不是一定。例如:假设存在两个线程(线程1、线程2), * 线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改, * 而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 * ConcurrentModificationException 异常,从而产生fail-fast机制。 */ modCount++; //当列表实际长度小于容量时 if (size < elementData.length) { //若为空列表,则将elementData置为空数组EMPTY_ELEMENTDATA //反之拷贝一个长度为size的数组,赋值为elementData elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } /** * Increases the capacity of this <tt>ArrayList</tt> instance, if * necessary, to ensure that it can hold at least the number of elements * specified by the minimum capacity argument. * 必要时,为ArrayList实例扩充容量, 来确保当前ArrayList能容纳下minCapacity参数 * 所指定的最小数量的元素 * * @param minCapacity the desired minimum capacity * 所需的最小容量,即最少能容纳新添加元素的容量 */ public void ensureCapacity(int minCapacity) { //如果当前列表不为默认容量的空列表,minExpand(最小扩充容量)为0 //如果当前列表为默认容量的空列表,minExpand(最小扩充容量)为默认容量10 int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It‘s already // supposed to be at default size. : DEFAULT_CAPACITY; //如果所需的最小容量比最小扩充容量要大 if (minCapacity > minExpand) { //确保正确的容量 ensureExplicitCapacity(minCapacity); } } //确保容量,内部函数 private void ensureCapacityInternal(int minCapacity) { //如果当前列表为默认容量空列表 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { //minCapacity小于DEFAULT_CAPACITY时,取DEFAULT_CAPACITY minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } //确保明确的容量 private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code // 当前列表容量不够时,扩充容量 if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit * 创建一个数组允许被分配的最大内存容量 * 一些虚拟机会在数组头部存储数组的元信息(引用Java Memory management中的描述): * 1.Class--指向数组Class类型的指针,如果为整形数组,则指向int[].class * 2.Flags--一些标志的集合,描述对象的状态、哈希码、对象的类型(即是否为一个数组) * 3.Lock --对象的同步信息,也就是说,对象是否正在同步 * 4.Size --数组长度 * 尝试分配更大长度的数组可能引起 OutOfMemoryError : * 请求的数组长度超出虚拟机限制 * Integer.MAX_VALUE = 0x7fffffff * 减去8即排除需要存储元数据的内存开销 */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Increases the capacity to ensure that it can hold at least the * number of elements specified by the minimum capacity argument. * 为列表扩容,来确保其能容纳参数minCapacity所指定数量的元素 * * @param minCapacity the desired minimum capacity */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; // 尝试扩充新容量为原来的1.5倍 int newCapacity = oldCapacity + (oldCapacity >> 1); // 扩充1.5倍不够,就将新容量置成最小所需的容量 if (newCapacity - minCapacity < 0) newCapacity = minCapacity; // 不好了,新容量超出了虚拟机单数组大小限制了! if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: // minCapacity 通常与列表的大小十分接近,所以这是一场胜利: // 直接创建一个新的数组,将原来数组的数据拷贝进去 // WTF! 没有realloc没有free?? 就是这么简单粗暴... elementData = Arrays.copyOf(elementData, newCapacity); } /* Arrays.copyOf源码贴下 * public static <T,U> T[] copyOf(U[] original, int newLength * , Class<? extends T[]> newType) { * @SuppressWarnings("unchecked") * //直接创建一个新的newType类型的数组,把原数组数据拷贝进去 * T[] copy = ((Object)newType == (Object)Object[].class) * //碎碎念下,C语言里,新建变量指定长度的数组也蛮想这样写的... * ? (T[]) new Object[newLength] * : (T[]) Array.newInstance(newType.getComponentType(), newLength); * System.arraycopy(original, 0, copy, 0, * Math.min(original.length, newLength)); * return copy; * } */ private static int hugeCapacity(int minCapacity) { //minCapacity都小于0了,扩充容量超出了最大正整数值,堆栈溢出 if (minCapacity < 0) // overflow throw new OutOfMemoryError(); //扩充后大于Integer.MAX_VALUE-8,返回Integer.MAX_VALUE //反之返回MAX_ARRAY_SIZE return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } /** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { return size; } /** * Returns <tt>true</tt> if this list contains no elements. * * @return <tt>true</tt> if this list contains no elements */ public boolean isEmpty() { return size == 0; } /** * Returns <tt>true</tt> if this list contains the specified element. * More formally, returns <tt>true</tt> if and only if this list contains * at least one element <tt>e</tt> such that * <tt>(o==null ? e==null : o.equals(e))</tt>. * * @param o element whose presence in this list is to be tested * @return <tt>true</tt> if this list contains the specified element */ public boolean contains(Object o) { return indexOf(o) >= 0; } /** * Returns the index of the first occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the lowest index <tt>i</tt> such that * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>, * or -1 if there is no such index. * 返回第一个等于参数对象的序号,没有则返回-1 */ public int indexOf(Object o) { //万恶的null if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; } /** * Returns the index of the last occurrence of the specified element * in this list, or -1 if this list does not contain the element. * More formally, returns the highest index <tt>i</tt> such that * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>, * or -1 if there is no such index. * 返回最后一个等于参数对象的序号,没有则返回-1,从后往前找而已 */ public int lastIndexOf(Object o) { //万恶的null if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } /** * Returns a shallow copy of this <tt>ArrayList</tt> instance. (The * elements themselves are not copied.) * * @return a clone of this <tt>ArrayList</tt> instance * 虽说建了个新ArrayList实例,存的东西还是浅拷贝呢 */ public Object clone() { try { ArrayList<?> v = (ArrayList<?>) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn‘t happen, since we are Cloneable throw new InternalError(e); } } /** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * * <p>The returned array will be "safe" in that no references to it are * maintained by this list. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this list in * proper sequence */ public Object[] toArray() { //复制一个吧 //比Arrays.ArrayList.toArray的直接clone要科学 //elementData是一个真的Object[] return Arrays.copyOf(elementData, size); } /** * Returns an array containing all of the elements in this list in proper * sequence (from first to last element); the runtime type of the returned * array is that of the specified array. If the list fits in the * specified array, it is returned therein. Otherwise, a new array is * allocated with the runtime type of the specified array and the size of * this list. * * <p>If the list fits in the specified array with room to spare * (i.e., the array has more elements than the list), the element in * the array immediately following the end of the collection is set to * <tt>null</tt>. (This is useful in determining the length of the * list <i>only</i> if the caller knows that the list does not contain * any null elements.) * 将elementData存进传进来的参数数组中 * * @param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) // Make a new array of a‘s runtime type, but my contents: // 参数数组长度不够,创建一个新的数组,复制数据并返回 return (T[]) Arrays.copyOf(elementData, size, a.getClass()); //长度够的话,直接写进参数数组好了 System.arraycopy(elementData, 0, a, 0, size); //参数数组长度比列表大小要大的话,在size处标记null if (a.length > size) a[size] = null; return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } /** * Returns the element at the specified position in this list. * * @param index index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E get(int index) { //序号范围检查 rangeCheck(index); return elementData(index); } /** * Replaces the element at the specified position in this list with * the specified element. * * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */ public E set(int index, E element) { //序号范围检查 rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } /** * Appends the specified element to the end of this list. * 在列表最后添加一个元素 push! * @param e element to be appended to this list * @return <tt>true</tt> (as specified by {@link Collection#add}) */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! // 这个函数,已经增加了modCount //push elementData[size++] = e; return true; } /* arraycopy(Object src, 原数组 int srcPos, 从原数组位置开始复制 Object dest, 目标数组 int destPos, 从目标数组的位置开始粘贴 int length); 复制多少个元素 */ /** * Inserts the specified element at the specified position in this * list. Shifts the element currently at that position (if any) and * any subsequent elements to the right (adds one to their indices). * 在指定位置添加元素 * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */ public void add(int index, E element) { //序号范围检查 rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! 怨念.. //把index,及index后的元素都向后移动一个位置,线性存储我看出来了 System.arraycopy(elementData, index, elementData, index + 1, size - index); //index置成element elementData[index] = element; size++; } /** * Removes the element at the specified position in this list. * Shifts any subsequent elements to the left (subtracts one from their * indices). * * @param index the index of the element to be removed * @return the element that was removed from the list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E remove(int index) { //序号范围检查 rangeCheck(index); modCount++; //把删除的对象取出来,作返回值 E oldValue = elementData(index); //把index后的元素向前移动一个位置 int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); //删除最后一个元素,取消引用,回收内存 elementData[--size] = null; // clear to let GC do its work return oldValue; } /** * Removes the first occurrence of the specified element from this list, * if it is present. If the list does not contain the element, it is * unchanged. More formally, removes the element with the lowest index * <tt>i</tt> such that * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt> * (if such an element exists). Returns <tt>true</tt> if this list * contained the specified element (or equivalently, if this list * changed as a result of the call). * 从列表中删除指定对象,由于存在对象才会删除,所以跳过了范围检查 * * @param o element to be removed from this list, if present * @return <tt>true</tt> if this list contained the specified element */ public boolean remove(Object o) { //万恶的null if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { //如果存了多个相同对象的话,还是会只删除第一个的 for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /* * Private remove method that skips bounds checking and does not * return the value removed. */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work } /** * Removes all of the elements from this list. The list will * be empty after this call returns. */ public void clear() { modCount++; // clear to let GC do its work // 对每个元素取消引用,回收内存 for (int i = 0; i < size; i++) elementData[i] = null; //列表大小置0 size = 0; } /** * Appends all of the elements in the specified collection to the end of * this list, in the order that they are returned by the * specified collection‘s Iterator. The behavior of this operation is * undefined if the specified collection is modified while the operation * is in progress. (This implies that the behavior of this call is * undefined if the specified collection is this list, and this * list is nonempty.) * 将参数集合插入列表 * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws NullPointerException if the specified collection is null */ public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount //将集合转为数组,拷贝到列表最后 System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } /** * Inserts all of the elements in the specified collection into this * list, starting at the specified position. Shifts the element * currently at that position (if any) and any subsequent elements to * the right (increases their indices). The new elements will appear * in the list in the order that they are returned by the * specified collection‘s iterator. * 将参数集合插入列表指定位置 * @param index index at which to insert the first element from the * specified collection * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */ public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; //将从index开始,的numNew个元素移动到列表末尾 if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); //将参数集合填充到中间位置 System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } /** * Removes from this list all of the elements whose index is between * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. * Shifts any succeeding elements to the left (reduces their index). * This call shortens the list by {@code (toIndex - fromIndex)} elements. * (If {@code toIndex==fromIndex}, this operation has no effect.) * 删除一段范围的元素 * @throws IndexOutOfBoundsException if {@code fromIndex} or * {@code toIndex} is out of range * ({@code fromIndex < 0 || * fromIndex >= size() || * toIndex > size() || * toIndex < fromIndex}) */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; //将toIndex后的元素向前移动到fromIndex的位置 System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // 列表末尾toIndex-fromIndex个元素取消引用,释放内存 // clear to let GC do its work int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; } /** * Checks if the given index is in range. If not, throws an appropriate * runtime exception. This method does *not* check if the index is * negative: It is always used immediately prior to an array access, * which throws an ArrayIndexOutOfBoundsException if index is negative. */ private void rangeCheck(int index) { //范围检查 if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * A version of rangeCheck used by add and addAll. */ private void rangeCheckForAdd(int index) { //插入返回检查,index<0 if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } /** * Removes from this list all of its elements that are contained in the * specified collection. * 删除所有集合参数所包含的元素 * * @param c collection containing elements to be removed from this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (<a href="Collection.html#optional-restrictions">optional</a>) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (<a href="Collection.html#optional-restrictions">optional</a>), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean removeAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, false); } /** * Retains only the elements in this list that are contained in the * specified collection. In other words, removes from this list all * of its elements that are not contained in the specified collection. * 保留集合所包含的元素 * @param c collection containing elements to be retained in this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (<a href="Collection.html#optional-restrictions">optional</a>) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (<a href="Collection.html#optional-restrictions">optional</a>), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean retainAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, true); } private boolean batchRemove(Collection<?> c, boolean complement) { //elementData的引用,声明为final,不允许修改这个引用地址 final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { //遍历elementData for (; r < size; r++) //removeAll complement为假:即如果集合不包含这个元素,则保留元素 //retainAll complement为真:即如果集合包含这个元素,则保留元素 if (c.contains(elementData[r]) == complement) //将当前元素按顺序写入elementData,从0开始. r>=w,所以这里没啥问题 elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. // 即使c.contains()抛出异常,也保持结果与AbstractCollectiony的行为一致 // r!= size , 即在遍历列表时抛出了异常,把r后的元素拷贝至w位置后 if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); //w加上末尾补充的元素数量 w += size - r; } //剩余元素数量与size不一致的时候 if (w != size) { // clear to let GC do its work // 清除w位置后的引用,释放内存 for (int i = w; i < size; i++) elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; } /** * Save the state of the <tt>ArrayList</tt> instance to a stream (that * is, serialize it). * * @serialData The length of the array backing the <tt>ArrayList</tt> * instance is emitted (int), followed by all of its elements * (each an <tt>Object</tt>) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i=0; i<size; i++) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is, * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if (size > 0) { // be like clone(), allocate array based upon size not capacity ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i<size; i++) { a[i] = s.readObject(); } } } /** * Returns a list iterator over the elements in this list (in proper * sequence), starting at the specified position in the list. * The specified index indicates the first element that would be * returned by an initial call to {@link ListIterator#next next}. * An initial call to {@link ListIterator#previous previous} would * return the element with the specified index minus one. * * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @throws IndexOutOfBoundsException {@inheritDoc} */ public ListIterator<E> listIterator(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } /** * Returns a list iterator over the elements in this list (in proper * sequence). * * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @see #listIterator(int) */ public ListIterator<E> listIterator() { return new ListItr(0); } /** * Returns an iterator over the elements in this list in proper sequence. * * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @return an iterator over the elements in this list in proper sequence */ public Iterator<E> iterator() { return new Itr(); } /** * An optimized version of AbstractList.Itr * AbstractList.Itr的优化版本 */ private class Itr implements Iterator<E> { // index of next element to return // 下个返回元素的位置 int cursor; // index of last element returned; -1 if no such // 最后一个返回元素的位置,如果不存在则标记为-1 int lastRet = -1; // 期望的修改次数,如果modCount没有按照预期变化,会抛出异常,实现fast-fail机制 int expectedModCount = modCount; public boolean hasNext() { return cursor != size; } //返回下个元素 @SuppressWarnings("unchecked") public E next() { //检查操作时列表是否被修改了 checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); //下个返回元素的位置置成i+1 cursor = i + 1; //lastRet置成i,返回第i个元素 return (E) elementData[lastRet = i]; } //删除 public void remove() { //迭代完毕了,无法再删除了 if (lastRet < 0) throw new IllegalStateException(); //检查操作时列表是否被修改了 checkForComodification(); try { //删除当前返回的最后一个元素 ArrayList.this.remove(lastRet); //下个返回元素的位置置为lastRet cursor = lastRet; //标记最后一个返回元素为-1,因为已经删掉了 lastRet = -1; //重置expectedModCount expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } //为每个剩余元素执行给定的操作,实现Consumer接口 @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } //检查操作时列表是否被修改了 final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * An optimized version of AbstractList.ListItr * AbstractList.ListItr的优化版本 */ private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * Returns a view of the portion of this list between the specified * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If * {@code fromIndex} and {@code toIndex} are equal, the returned list is * empty.) The returned list is backed by this list, so non-structural * changes in the returned list are reflected in this list, and vice-versa. * The returned list supports all of the optional list operations. * * <p>This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays). Any operation that expects * a list can be used as a range operation by passing a subList view * instead of a whole list. For example, the following idiom * removes a range of elements from a list: * <pre> * list.subList(from, to).clear(); * </pre> * Similar idioms may be constructed for {@link #indexOf(Object)} and * {@link #lastIndexOf(Object)}, and all of the algorithms in the * {@link Collections} class can be applied to a subList. * * <p>The semantics of the list returned by this method become undefined if * the backing list (i.e., this list) is <i>structurally modified</i> in * any way other than via the returned list. (Structural modifications are * those that change the size of this list, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * * @throws IndexOutOfBoundsException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } private class SubList extends AbstractList<E> implements RandomAccess { private final AbstractList<E> parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size() { checkForComodification(); return this.size; } public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collection<? extends E> c) { return addAll(this.size, c); } public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator<E> iterator() { return listIterator(); } public ListIterator<E> listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator<E>() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = SubList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write traffic lastRet = cursor = i; checkForComodification(); } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; } private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } public Spliterator<E> spliterator() { checkForComodification(); return new ArrayListSpliterator<E>(ArrayList.this, offset, offset + this.size, this.modCount); } } @Override public void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> * and <em>fail-fast</em> {@link Spliterator} over the elements in this * list. * * <p>The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * Overriding implementations should document the reporting of additional * characteristic values. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator<E> spliterator() { return new ArrayListSpliterator<>(this, 0, -1, 0); } /** Index-based split-by-two, lazily initialized Spliterator */ static final class ArrayListSpliterator<E> implements Spliterator<E> { /* * If ArrayLists were immutable, or structurally immutable (no * adds, removes, etc), we could implement their spliterators * with Arrays.spliterator. Instead we detect as much * interference during traversal as practical without * sacrificing much performance. We rely primarily on * modCounts. These are not guaranteed to detect concurrency * violations, and are sometimes overly conservative about * within-thread interference, but detect enough problems to * be worthwhile in practice. To carry this out, we (1) lazily * initialize fence and expectedModCount until the latest * point that we need to commit to the state we are checking * against; thus improving precision. (This doesn‘t apply to * SubLists, that create spliterators with current non-lazy * values). (2) We perform only a single * ConcurrentModificationException check at the end of forEach * (the most performance-sensitive method). When using forEach * (as opposed to iterators), we can normally only detect * interference after actions, not before. Further * CME-triggering checks apply to all other possible * violations of assumptions for example null or too-small * elementData array given its size(), that could only have * occurred due to interference. This allows the inner loop * of forEach to run without any further checks, and * simplifies lambda-resolution. While this does entail a * number of checks, note that in the common case of * list.stream().forEach(a), no checks or other computation * occur anywhere other than inside forEach itself. The other * less-often-used methods cannot take advantage of most of * these streamlinings. */ private final ArrayList<E> list; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ ArrayListSpliterator(ArrayList<E> list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) ArrayList<E> lst; if ((hi = fence) < 0) { if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } public ArrayListSpliterator<E> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator<E>(list, lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumer<? super E> action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer<? super E> action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList<E> lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } @Override public boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }
时间: 2024-10-27 03:19:45