min-max容斥

这玩意儿一般都是跟概率期望结合的吧,就是下面这个式子(\(max(S)\)代表集合\(S\)中的最大值,\(min(S)\)同理):
\[max(S)=\sum\limits_{T\subseteq S}(-1)^{\left | T \right |-1}min(T)\]
证明的话就考虑第\(k\)大的元素对\(max(S)\)的贡献就行了,把式子列出来之后你会发现它的贡献只有在\(k=1\)时才为\(1\),在\(k>1\)全部为\(0\)
能用它做的期望题一般都是这样的:每次操作把集合中的一个数从\(0\)变为\(1\),求全部的数都变为\(1\)的期望次数。
我们就令\(max(S)\)表示\(S\)中的元素全部变为\(1\)的期望次数,\(min(T)\)表示\(T\)中的元素至少有一个变为\(1\)的期望次数,那么它们也满足上面的那个式子(貌似是因为期望的线性性?)
给一道例题:HDU4336 Card Collector
不就是个板子吗。。。
还有一道[HAOI2015]按位或需要和\(FWT\)一起搞

原文地址:https://www.cnblogs.com/dummyummy/p/10442751.html

时间: 2024-10-06 10:03:35

min-max容斥的相关文章

「总结」容斥。二.反演原理

二.反演原理 0.综述 说一下个人对反演的理解. 反演是一种手段,一种处理已知信息和未知信息关系的手段,用来得到未知信息的方式.也就是以一种既定的手段在较小的时间复杂度内用已知的信息得到未知的信息. 还有$zsq$学长更加浅显的解读. 反演一般就是把一个好看但难算的式子转化成一个难看且难算的式子在转化为一个难看但好算的式子. 先来一个裸一点的反演 下面要说我知道的四种反演. 子集反演,针对的是集合交并的容斥. 二项式反演,针对组合原理的容斥. 莫比乌斯反演,针对约数和倍数的容斥. 斯特林反演,针

hdu1695:数论+容斥

题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化为求区间 [1,b/k]和 [1,d/k]的互质数对个数 由于题目规定 (x,y)和(y,x)是同一种,所以我们可以规定 x<y,,然后只需对每一个y求出比他小的即可 公共部分可以通过欧拉函数快速求出.. 非公共部分就不行了.. 所以就分解质因数,用容斥的方法求了 #include <iostre

HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd(a_1,a_2,a_3…a_n)=d$,显然每个$a_i$的倍数都满足,有$\frac{a_i}{d}$种方案 那么一个d对答案的贡献为\[\prod_{i=1}^{min(a)}{\lfloor\frac{a_i}{d}\rfloor}    \] 但是所有的d计入会有重复情况,考虑容斥,对d进行素数分

SPOJ - AMR11H Array Diversity (水题排列组合或容斥)

题意:给定一个序列,让你求两种数,一个是求一个子序列,包含最大值和最小值,再就是求一个子集包含最大值和最小值. 析:求子序列,从前往记录一下最大值和最小值的位置,然后从前往后扫一遍,每个位置求一下数目就好. 求子集可以用排列组合解决,很简单,假设最大值个数是 n,最小值的数是 m,总数是 N,答案就是 (2^n-1) * (2^m-1)*2^(N-m-n), 当然要特殊判断最大值和最小值相等的时候. 当然也可以用容斥来求,就是总数 - 不是最大值的数目 - 不是最小值的数目 + 不是最大值也不是

HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由于得到每张卡片的状态不知道,所以用状态压缩,dp[i] 表示这个状态时,要全部收齐卡片的期望. 由于有可能是什么也没有,所以我们要特殊判断一下.然后就和剩下的就简单了. 另一个方法就是状态压缩+容斥,同样每个状态表示收集的状态,由于每张卡都是独立,所以,每个卡片的期望就是1.0/p,然后要做的就是要去重,既然

hdu2848 Visible Trees (容斥定理)

题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看到多少个点. 知识点: 容斥原理:(容许) 先不考虑重叠的情况,把包含于某条件中的所有对象的数目先计算出来,(排斥)然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复. 公式:          奇加偶减 一般求互质个数若用欧拉函数不好解决,则从反面考虑,用容斥. 模板: void

hdu5072 Coprime 2014鞍山现场赛C题 计数+容斥

http://acm.hdu.edu.cn/showproblem.php?pid=5072 Coprime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 354    Accepted Submission(s): 154 Problem Description There are n people standing in a

POJ 3695 Rectangles (矩形并 状压+容斥定理 好题)

Rectangles Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3730   Accepted: 1082 Description You are developing a software for painting rectangles on the screen. The software supports drawing several rectangles and filling some of them w

hdu4407 Sum 容斥+暴力

http://acm.hdu.edu.cn/showproblem.php?pid=4407 Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1990    Accepted Submission(s): 564 Problem Description XXX is puzzled with the question below

HDU 6053 TrickGCD 容斥

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意: 给你序列a,让你构造序列b,要求 1<=b[i]<=a[i],且b序列的gcd>=2.问你方案数. 思路: 容易想到的就是我们枚举整个序列的gcd,然后a[i]/gcd就是i位置能够填的数的个数,然后每个位置累积就能得到数列为gcd时的方案数. 最后容斥一下累加就是答案.但是最大gcd可以是100000和明显这样做n^2,会超时. 那么我们把a[i]/gcd的放在一起,然后用