卷积网络(CNN)通常用于图像数据。递归神经网络(RNN)非常适合一维序列,数据可能是一个时间组成部分。
计算机理解非结构化数据相对更难,如音频,图像像素值或文本中的单个单词。
如今最可靠的方法来在神经网络上获得更好的性能,往往就是要么训练一个更大的神经网络,要么投入更多的数据
,仅仅通过将Sigmoid函数转换成ReLU函数,便能够使得一个叫做梯度下降(gradient descent)的算法运行的更快
Sigmoid ReLU
原文地址:https://www.cnblogs.com/61355ing/p/10633874.html
时间: 2024-10-14 22:56:42