数据挖掘算法:k-means算法的C++实现

(期末考试要到了,所以比较粗糙,请各位读者理解。。)

一、    概念

k-means是基于原型的、划分的聚类技术。它试图发现用户指定个数(K)的簇(由质心代表)。K-means算法接受输入量K,然后将N个数据对象划分为K个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得的均值所获得一个“中心对象”(引力中心)来进行计算的。

二、    伪代码

1    选择K个点作为初始质心。

2    Repeat

3        将每个点指派到最近的质心,形成K个簇。

4        重新计算每个簇的质心。

5    Until 质心不发生变化。

三、    重要数据结构

1    定义簇数、点数和维数

#define K 3       // K为簇数

#define N 50      // N为点数

#define D 2       // D为维数

2    各类数组

double point[N][D];      // N个D维点

double barycenter_initial[K][D];   // K个D维初始质心位置

double barycenter_before[K][D];    // 记录每次变换前质心的位置

double barycenter_finished[K][D];  // 最终得到的质心位置

double O_Distance[K];    // 记录某点对于各质心的欧几里得距离

int belongWhichBC[N];    // 记录每个点属于哪一个簇

double mid[D];    // 记录中间值

3    随机生成数据点

// 初始化数据点(坐标值均在0-100之间)

void CoordinateDistribution(int n, int d) {

srand((unsigned)time(NULL));    // 保证随机性

for(int i=0; i<n; i++) {

for(int j=0; j<d; j++) {

point[i][j] = rand() % 101;

}

}

}

四、    源代码

// k-means算法的C++实现

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <fstream>

using namespace std;

#define K 3 // K为簇数
#define N 20 // N为点数
#define D 2 // D为维数

double point[N][D]; // N个D维点
double barycenter_initial[K][D]; // K个D维初始质心位置
double barycenter_before[K][D]; // 记录每次变换前质心的位置
double barycenter_finished[K][D]; // 最终得到的质心位置
double O_Distance[K]; // 记录某点对于各质心的欧几里得距离
int belongWhichBC[N]; // 记录每个点属于哪一个簇
double mid[D]; // 记录中间值

// 初始化数据点(坐标值均在0-100之间)
void CoordinateDistribution(int n, int d) {
srand((unsigned)time(NULL)); // 保证随机性
for(int i=0; i<n; i++) {
for(int j=0; j<d; j++) {
point[i][j] = rand() % 101;
}
}
}

// 初始化质心(坐标值均在0-100之间)
void initBarycenter(int k, int d) {
for(int i=0; i<k; i++) {
for(int j=0; j<d; j++) {
barycenter_initial[i][j] = rand() % 101;
}
}
}

int main(int argc, char** argv) {

// 为N个点随机分配D维坐标
int n = N, d = D;
CoordinateDistribution(n, d);

// 首先输出K, N, D的值
cout<<"簇数 K = "<<K<<endl<<"点数 N = "<<N<<endl<<"维数 D = "<<D<<endl<<endl;

// 输出N个坐标点
cout<<"系统生成的N个点如下:"<<endl;
for(int i=0; i<n; i++) {
cout<<"第"<<i+1<<"个"<<"\t";
for(int j=0; j<d; j++) {
cout<<point[i][j]<<"\t";
}
cout<<endl;
}
cout<<endl;

// 选择K个初始质心
int k = K;
initBarycenter(k, d);

// 输出系统生成的初始质心
cout<<"系统生成的K个初始质心如下:" <<endl;
for(int i=0; i<k; i++) {
cout<<"第"<<i+1<<"个"<<"\t";
for(int j=0; j<d; j++) {
cout<<barycenter_initial[i][j]<<"\t";
}
cout<<endl;
}
cout<<endl;

// 将“首次变换前质点”的位置,初始化为initial时的位置
// 将“最终得到的质点”的位置均初始化为(-1, -1),使其与首次变换前的位置不相同
for(int i=0; i<k; i++) {
for(int j=0; j<d; j++) {
barycenter_before[i][j] = barycenter_initial[i][j];
barycenter_finished[i][j] = -1;
}
}

int times = 0; // 定义循环进行到第几次

// 循环计算
while(true) {

for(int i=0; i<n; i++) { // 对于每一个点
for(int j=0; j<k; j++) { // 求对于K个簇,每个簇的欧氏距离
double sum = 0;
for(int x=0; x<d; x++) {
sum = sum + pow(point[i][x]-barycenter_before[j][x], 2);
}
// O_Distance[j] = sqrt(sum); // 因为sum和sqrt(sum)是正相关,所以要比较sqrt(sum)的大小,只需比较sum的大小
O_Distance[j] = sum;
}
int x = 0, temp = x; // temp里面保存的是:某点所对应的欧氏距离最小的簇序号
while(x<k) {
if(O_Distance[x] < O_Distance[temp]) {
temp = x;
x++;
}
else {
x++;
}
}
belongWhichBC[i] = temp;
}

for(int j=0; j<k; j++) {

// 将a[]内全部元素置0
for(int i=0; i<d; i++) {
mid[i] = 0;
}

int number = 0; // 计算某簇中共有多少个点
for(int i=0; i<n; i++) {
if(belongWhichBC[i] == j) { // 某点所述簇的序号匹配
number++;
for(int y=0; y<d; y++) {
mid[y] = mid[y] + point[i][y];
}
}
}

for(int y=0; y<d; y++) {
barycenter_finished[j][y] = mid[y] / number;
}

}

// flag=0,表示barycenter_before与barycenter_finished内元素完全一致,退出循环
// flag=1,表示二者内元素不完全一致,仍需继续循环
int flag = 0;
for(int i=0; i<k; i++) {
for(int j=0; j<d; j++) {
if(barycenter_before[i][j] - barycenter_finished[i][j] <= 0.0001) {
flag = 0;
continue;
}
else {
flag = 1;
break;
}
}
if(flag == 0) {
continue;
}
else {
break;
}
}
if(flag == 0) {
times++;
cout<<"第"<<times<<"轮循环后,得到的K个质心如下:"<<endl;
for(int m=0; m<k; m++) {
cout<<"第"<<m+1<<"个"<<"\t";
for(int n=0; n<d; n++) {
cout<<barycenter_finished[m][n]<<"\t";
}
cout<<endl;
}
break;
}
else {
times++;
cout<<"第"<<times<<"轮循环后,得到的K个质心如下:"<<endl;
for(int m=0; m<k; m++) {
cout<<"第"<<m+1<<"个"<<"\t";
for(int n=0; n<d; n++) {
cout<<barycenter_finished[m][n]<<"\t";
}
cout<<endl;
}

// 若要继续循环,则应该把barycenter_finished中的元素作为下一个循环中barycenter_before中的元素
for(int i=0; i<k; i++) {
for(int j=0; j<d; j++) {
barycenter_before[i][j] = barycenter_finished[i][j];
}
}
continue;
}
}
cout<<endl;

// 输出最终质心位置
cout<<"经过 k-means 算法,得到各簇的质心如下:"<<endl;
for(int i=0; i<k; i++) {
cout<<"第"<<i+1<<"个"<<"\t";
for(int j=0; j<d; j++) {
cout<<barycenter_finished[i][j]<<"\t";
}
cout<<endl;
cout<<"该簇所包含的点有:"<<endl;
for(int j=0; j<N; j++) {
if(belongWhichBC[j] == i) {
cout<<j+1<<"\t";
}
}
cout<<endl;
}

return 0;
}

五、    运行结果

注:K=3,N=20,D=2

图1 k-means算法运行结果-1

图2 k-means算法运行结果-2

图3 利用Graph作图展示k-means算法运行结果

时间: 2024-10-06 03:21:25

数据挖掘算法:k-means算法的C++实现的相关文章

聚类算法:K-means 算法(k均值算法)

k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设定,例如可选开始的$K$个模式样本的向量值作为初始聚类中心.      第二步:逐个将需分类的模式样本$\{x\}$按最小距离准则分配给$K$个聚类中心中的某一个$z_j(1)$.假设$i=j$时, \[D_j (k) = \min \{ \left\| {x - z_i (k)} \right\|

机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocessing.py import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.scale_ = None def fit(self, X): """根据训练数据集X获得数据的均

分类算法——k最近邻算法(Python实现)(文末附工程源代码)

kNN算法原理 k最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法.它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样本中大多数属于某一个类别,则该样本也属于这个类别. kNN算法的步骤 第一阶段:确定k值(指最近的邻居的个数),一般是一个奇数 第二阶段:确定距离度量公式.文本分类一般使用夹角余弦,得出待分类数据点和所有已知类别的样本点,从中选择距离最近的k个样本: 第三阶段:统计这k个样本点钟各个类别的数量 kN

最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是通过程序员经验得到. 假设此时来了一个新的样本绿色,我们需要预测该样本的数据是良性还是恶性肿瘤.我们从训练样本中选择k=3个离新绿色样本最近的样本,以选取的样本点自己的结果进行投票,如图投票结果为蓝色:红色=3:0,所以预测绿色样本可能也是恶性肿瘤. 再比如 此时来了一个新样本,我们选取离该样本最近

02-16 k近邻算法

[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ k近邻算法 k近邻算法(k-nearest neighbors,KNN)是一种基本的分类和回归方法,本文只探讨分类问题中的k近邻算法,回归问题通常是得出最近的$k$个实例的标记值,然后取这$k$实例标记值的平均数或中位数. k近邻算法经常被人们应用于生活当中,比如傅玄曾说过"近朱者赤近墨者黑&quo

K-means算法

K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢?     那我们就用K-means算法进行划分吧. 算法很简单,这么做就可以啦: 第一步:随机初始化每种类别的中心点,u1,u2,u3,--,uk; 第二步:重复以下过程: 然后 ,就没有然后了,就这样子. 太简单, 不解释.

图说十大数据挖掘算法(一)K最近邻算法

如果你之前没有学习过K最近邻算法,那今天几张图,让你明白什么是K最近邻算法. 先来一张图,请分辨它是什么水果 很多同学不假思索,直接回答:"菠萝"!!! 仔细看看同学们,这是菠萝么?那再看下边这这张图. 这两个水果又是什么呢? 这就是菠萝与凤梨的故事,下边即将用菠萝和凤梨,给大家讲述怎么用一个算法来知道这是个什么水果的过程,也就是什么是K最近邻算法. (给非吃货同学们补充一个生活小常识,菠萝的叶子有刺,凤梨没有.菠萝的凹槽处是黄色的,而凤梨的凹槽处是绿色的,以后千万不要买错哦!!!)

《数据挖掘导论》实验课——实验七、数据挖掘之K-means聚类算法

实验七.数据挖掘之K-means聚类算法 一.实验目的 1. 理解K-means聚类算法的基本原理 2. 学会用python实现K-means算法 二.实验工具 1. Anaconda 2. sklearn 3. matplotlib 三.实验简介 1 K-means算法简介 k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇.聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验

数据挖掘十大经典算法

一. C4.5  C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足: 2) 在树构造过程中进行剪枝: 3) 能够完成对连续属性的离散化处理: 4) 能够对不完整数据进行处理. C4.5算法有如下优点:产生的分类规则易于理解,准确率较高.其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导

[数据挖掘] - 聚类算法:K-means算法理解及SparkCore实现

聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记录)的集合,将这些对象划分为多个组或者“聚簇”,从而使同组内的对象间比较相似而不同组对象间差异比较大:换言之,聚类算法就是将相似的对象放到同一个聚簇中,而将不相似的对象放到不同的聚簇中.由于在聚类过程中不使用到类别标签,所以相似性的概念要基于对象的属性进行定义.应用不同则相似性规则和聚类算法一般不太