读取多张MNIST图片
在读取多张MNIST图片之前,我们先来看下读取单张图片如何实现
每张数字图片大小都为28 * 28的,需要将数据reshape成28 * 28的,采用最近邻插值,如下
def plot_digit(data): img = data.reshape(28,28) plt.imshow(img,cmap=matplotlib.cm.binary,interpolation=‘nearest‘) plt.axis(‘off‘)
import matplotlib.pyplot as plt import matplotlib some_digit = X[36000] plot_digit(some_digit)
现在来读取多张MNIST图片
需要确定每行显示多少张图片,根据照片数最多显示几行,最后一行有几个未填满,将每行进行连接起来
def plot_digits(instances,images_per_row = 10,**options): size = 28 images_per_row = min(len(instances),images_per_row) images = [instance.reshape(size,size) for instance in instances] n_rows = (len(instances) - 1) // images_per_row +1 row_images = [] n_empty = n_rows * images_per_row - len(instances) images.append(np.zeros((size,size*n_empty))) for row in range(n_rows): rimages = images[row * images_per_row:(row+1) * images_per_row] row_images.append(np.concatenate(rimages,axis=1)) image = np.concatenate(row_images,axis=0) plt.imshow(image,cmap=matplotlib.cm.binary,**options) plt.axis(‘off‘)
import numpy as np import os # to make this notebook‘s output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc(‘axes‘, labelsize=14) mpl.rc(‘xtick‘, labelsize=12) mpl.rc(‘ytick‘, labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." #CHAPTER_ID = "classification" def save_fig(fig_id, tight_layout=True): path = os.path.join(PROJECT_ROOT_DIR, "images", fig_id + ".png") print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=‘png‘, dpi=300)
plt.figure(figsize=(9,9)) example_images = np.r_[X[:12000:600], X[13000:30600:600], X[30600:60000:590]] plot_digits(example_images, images_per_row=10) save_fig("more_digits_plot") plt.show()
显示并将结果存入磁盘
利用BaseEstimator基类创建分类器
在做非5分类器的交叉验证时,需要写一个非5的分类器
估计器(Estimator)很多时候可以直接理解成分类器,主要包括两个函数
- fit():训练算法,设置内部参数,接受训练集和类别两个参数
- predict():预测测试集类别,参数为测试集
大多数sklearn估计器接受和输出的数据格式均为numpy数组或类似格式
from sklearn.base import BaseEstimator class Never5Classifier(BaseEstimator): def fit(self,X,y = None): pass def predict(self,X): return np.zeros((len(X),1),dtype = bool)
never_5_clf = Never5Classifier() cross_val_score(never_5_clf,X_train,y_train_5,cv = 3,scoring=‘accuracy‘)
Never5Classifier分类器预测的结果都是0,而数字为5的标签应该都为1,非5的为0,这时候可以看出也有90%的可能性猜对某张图片不是5
关于评估器以及转换器、流水线(Pipline)等更多参考:https://www.jianshu.com/p/516f009c0875
原文地址:https://www.cnblogs.com/whiteBear/p/12341094.html
时间: 2024-10-08 01:58:34