linux 记一次链路聚合

前言:

将多个linux网络端口绑定为1个,可以提升网络性能。公司做了glusterfs网络文件系统,读写都在一块网卡上,导致I/O很低,最后决定做链路聚合来提升服务器的网络吞吐(I/O)可以使用linux teaming 或 bond模块。目前发布的各个linux版本内核均已包含了该模块,大多数情况下不需要重新编译内核。公司的系统是centos6.5,使用bonding模块。Bonding模块提供了绑定/集成多个网卡作为一个虚拟逻辑网口的功能。本次采用了模式0负载均衡模式,常用的还有1冗余模式。服务器共有4块网卡,其余两块都被占用,所以只聚合剩余两块网卡。

步骤

(1)创建bond网卡文件

[[email protected] ~]# cd /etc/sysconfig/network-scripts/                //进入网卡配置目录

[[email protected] network-scripts]# vim ifcfg-bond1             //创建bond1文件,因为已经创建过bond0
DEVICE=bond1                        //网卡名称bond1
IPADDR=192.168.0.36            //ip地址
NETMASK=255.255.255.0       //子网掩码
#GATEWAY=192.168.130.1     //网关被注释了,因为已经做了高级路由
TYPE=Ethernet                        //类型是以太网
ONBOOT=yes                         //开机自启
NM_CONTROLLED=no           //不接受NerworkManager管理
BOOTPROTO=none                //静态ip

(2)配置要聚合的网卡

[[email protected] network-scripts]# vim ifcfg-em1
DEVICE=em1                                     //设备名称em1
HWADDR=78:2B:CB:58:37:77            //mac地址
TYPE=Ethernet                           //类型以太网
MASTER=bond1                        //主是bond1
SLAVE=yes                                //开启聚合
UUID=95e495f1-da8c-4235-a32c-547da4635ec8              //uuid
ONBOOT=yes                           //开机自启
NM_CONTROLLED=no 
BOOTPROTO=none

[[email protected] network-scripts]# cat ifcfg-em2
DEVICE=em2
HWADDR=78:2B:CB:58:37:79
TYPE=Ethernet
UUID=b91ae4e3-0bc0-4fe1-a77f-fb39a1204341
MASTER=bond1
SLAVE=yes
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=none
DNS1=202.106.0.20                //设置dns
IPV6INIT=no                          //不允许ipv6
USERCTL=no                         //普通用户不能控制网卡

(3)装载bond模块驱动

[[email protected] network-scripts]# vim /etc/modprobe.d/dist.conf

alias bond1 bonding
options bond1 miimon=100 mode=0

(4)设置开机自动运行

[[email protected] network-scripts]# vim /etc/rc.local

ifenslave bond1 em1 em2

(5)测试

[[email protected] network-scripts]# modprobe bonding

[[email protected] network-scripts]# less /proc/net/bonding/bond1

(6)bond 7中模式说明

不知道在哪看到的,以下属于复制别人的东西

七种bond模式说明:

第一种模式:mod=0 ,即:(balance-rr)Round-robin policy(平衡抡循环策略)

特点:传输数据包顺序是依次传输(即:第1个包走eth0,下一个包就走eth1….一直循环下去,直到最后一个传输完毕),此模式提供负载平衡和容错能力;但是我们知道如果一个连接或者会话的数据包从不同的接口发出的话,中途再经过不同的链路,在客户端很有可能会出现数据包无序到达的问题,而无序到达的数据包需要重新要求被发送,这样网络的吞吐量就会下降

第二种模式:mod=1,即: (active-backup)Active-backup policy(主-备份策略)

特点:只有一个设备处于活动状态,当一个宕掉另一个马上由备份转换为主设备。mac地址是外部可见得,从外面看来,bond的MAC地址是唯一的,以避免switch(交换机)发生混乱。此模式只提供了容错能力;由此可见此算法的优点是可以提供高网络连接的可用性,但是它的资源利用率较低,只有一个接口处于工作状态,在有 N 个网络接口的情况下,资源利用率为1/N

第三种模式:mod=2,即:(balance-xor)XOR policy(平衡策略)

特点:基于指定的传输HASH策略传输数据包。缺省的策略是:(源MAC地址 XOR 目标MAC地址)% slave数量。其他的传输策略可以通过xmit_hash_policy选项指定,此模式提供负载平衡和容错能力

第四种模式:mod=3,即:broadcast(广播策略)

特点:在每个slave接口上传输每个数据包,此模式提供了容错能力

第五种模式:mod=4,即:(802.3ad)IEEE 802.3ad Dynamic link aggregation(IEEE802.3ad 动态链接聚合)

特点:创建一个聚合组,它们共享同样的速率和双工设定。根据802.3ad规范将多个slave工作在同一个激活的聚合体下。外出流量的slave选举是基于传输hash策略,该策略可以通过xmit_hash_policy选项从缺省的XOR策略改变到其他策略。需要注意的 是,并不是所有的传输策略都是802.3ad适应的,尤其考虑到在802.3ad标准43.2.4章节提及的包乱序问题。不同的实现可能会有不同的适应 性。

必要条件:

条件1:ethtool支持获取每个slave的速率和双工设定

条件2:switch(交换机)支持IEEE802.3ad Dynamic link aggregation

条件3:大多数switch(交换机)需要经过特定配置才能支持802.3ad模式

第六种模式:mod=5,即:(balance-tlb)Adaptive transmit load balancing(适配器传输负载均衡)

特点:不需要任何特别的switch(交换机)支持的通道bonding。在每个slave上根据当前的负载(根据速度计算)分配外出流量。如果正在接受数据的slave出故障了,另一个slave接管失败的slave的MAC地址。

该模式的必要条件:ethtool支持获取每个slave的速率

第七种模式:mod=6,即:(balance-alb)Adaptive load balancing(适配器适应性负载均衡)

特点:该模式包含了balance-tlb模式,同时加上针对IPV4流量的接收负载均衡(receiveload balance, rlb),而且不需要任何switch(交换机)的支持。接收负载均衡是通过ARP协商实现的。bonding驱动截获本机发送的ARP应答,并把源硬件地址改写为bond中某个slave的唯一硬件地址,从而使得不同的对端使用不同的硬件地址进行通信。

来自服务器端的接收流量也会被均衡。当本机发送ARP请求时,bonding驱动把对端的IP信息从ARP包中复制并保存下来。当ARP应答从对端到达时,bonding驱动把它的硬件地址提取出来,并发起一个ARP应答给bond中的某个slave。使用ARP协商进行负载均衡的一个问题是:每次广播 ARP请求时都会使用bond的硬件地址,因此对端学习到这个硬件地址后,接收流量将会全部流向当前的slave。这个问题可以通过给所有的对端发送更新(ARP应答)来解决,应答中包含他们独一无二的硬件地址,从而导致流量重新分布。当新的slave加入到bond中时,或者某个未激活的slave重新 激活时,接收流量也要重新分布。接收的负载被顺序地分布(roundrobin)在bond中最高速的slave上当某个链路被重新接上,或者一个新的slave加入到bond中,接收流量在所有当前激活的slave中全部重新分配,通过使用指定的MAC地址给每个 client发起ARP应答。下面介绍的updelay参数必须被设置为某个大于等于switch(交换机)转发延时的值,从而保证发往对端的ARP应答 不会被switch(交换机)阻截。

必要条件:

条件1:ethtool支持获取每个slave的速率;

条件2:底层驱动支持设置某个设备的硬件地址,从而使得总是有个slave(curr_active_slave)使用bond的硬件地址,同时保证每个 bond 中的slave都有一个唯一的硬件地址。如果curr_active_slave出故障,它的硬件地址将会被新选出来的 curr_active_slave接管其实mod=6与mod=0的区别:mod=6,先把eth0流量占满,再占eth1,….ethX;而mod=0的话,会发现2个口的流量都很稳定,基本一样的带宽。而mod=6,会发现第一个口流量很高,第2个口只占了小部分流量

时间: 2024-10-22 02:53:30

linux 记一次链路聚合的相关文章

linux初学者-网卡的链路聚合篇

linux初学者-网卡的链路聚合篇 网卡的链路聚合就是将多块网卡连接起来,当一块网卡损坏,网络依旧可以正常运行,可以有效的防止因为网卡损坏带来的损失,同时也可以提高网络访问速度. 网卡的链路聚合一般常用的有"bond"和"team"两种模式,"bond"模式最多可以添加两块网卡,"team"模式最多可以添加八块网卡. 1.bond bond模式的配置步骤如下图所示,在配置之前需要有两块网卡: a."nmcli con

Linux进阶之bond链路聚合

一.简述: 一般来讲,生产环境必须提供7×24小时的网络传输服务.借助于网卡绑定技术,不仅可以提高网络传输速度,更重要的是,还可以确保在其中一块网卡出现故障时,依然可以正常提供网络服务.假设我们对两块网卡实施了绑定技术,这样在正常工作中它们会共同传输数据,使得网络传输的速度变得更快:而且即使有一块网卡突然出现了故障,另外一块网卡便会立即自动顶替上去,保证数据传输不会中断. 二.三种模式: 常见的网卡绑定驱动有三种模式—mode0.mode1和mode6.下面以绑定两块网卡为例,讲解使用的情景.

链路聚合与权重

链路聚合通过聚合多条并行的物理链路,对上层协议表现为一条逻辑链路,来提高吞吐量和冗余性.常见的链路聚合技术有Cisco的Etherchannel ,华为的Eth-trunk 以及 linux bonding 等.链路聚合分为动态和静态两种,静态的通过手工配置,动态的通过协议协商.IEEE 规定的链路聚合标准 LACP(Link Aggregation Control Protocol)使用的最为广泛1. 以太网的链路带宽是以10Mbps.100Mbps.1000Mpbs.10Gbps等,速率增长

Linux 链路聚合

Linux 链路聚合 链路聚合与双网卡绑定几乎相同,可以实现多网卡绑定主从荣誉,负载均衡,提高网络访问流量.但链路聚合与双网卡绑定技术(bond)不同点就在于,双网卡绑定只能使用两个网卡绑定,而链路聚合最多可将8个网卡汇聚同时做绑定,此聚合模式称之为team team 四种模式 广播容错:"broadcast" 平衡轮询:"roundrobin" 主备:"activebackup" 负载均衡:"loadbalance" tea

Linux 主机与虚拟机网桥制作与网卡链路聚合

一.网桥制作 1.主机的网桥制作 删除主机的/etc/sysconfig/network-scripts/ifcfg-enp0s25 在/etc/sysconfig/network-scripts/ifcfg-br0目录下添加文件 #编辑主机的物理网卡文件 vim /etc/sysconfig/network-scripts/ifcfg-enp0s25 DEVICE=enp0s25 BOOTPROTO=none NAME=westos BRIDGER=br0 #编辑虚拟网桥文件 vim /etc

linux网卡实现高可用:team链路聚合

一.链路聚合简介 1. TIC teaming 将多个物理端口绑定在一起当成一个逻辑端口使用 Rhel7是通过runner(可以视作一段代码)来实现高可用或负载均衡 2. Team结构 Mster:一个逻辑端口,可以看作一个组 Slave:所有的物理端口,可以看作成员 3. Team实现过程 配置一个mster(逻辑端口),并且同时通过runner设置模式(HA或者LB) 将物理网卡绑定到master 启用加入master的slave 配置IP 二.例 将物理网卡eno16777736和eno3

Linux的高级网络网桥、链路聚合

一.网桥实验 1.测试环境为网络搭建虚拟机 开始为NAT模式 安装过程NAT速度很慢 2.配置网桥参数文件 3.测试网桥模式下的虚拟机安装速度 与第一次实验相同,只是将网络模式换为网桥模式安装,速度很快 网桥设置 二.bond 三.链路聚合

Linux进阶之链路聚合

CentOS7用命令配置链路聚合 链路聚合是一个计算机网络术语,将多个物理端口汇聚在一起,形成一个逻辑端口,以实现出入流量在各成员端口的负荷分担,交换机根据用户配置的端口负荷分担策略决定网络封包从哪个成员端口发送到对端的交换机. 一.实验环境准备 在VMware Workstation部署好CentOS7系统: 至少为安装好的CentOS7系统添加两块网卡. 二.创建虚拟网卡 nmcli connection add type team con-name team0 ifname team0 a

Linux链路聚合

链路聚合是一个计算机网络术语,指将多个物理端口汇聚在一起,形成一个逻辑端口,以实现出/入流量吞吐量在各成员端口的负荷分担,交换机根据用户配置的端口负荷分担策略决定网络封包从那个成员端口发送到对端的交换机.当交换机检测到其中一个成员端口的链路发生故障时,就停止在此端口上发送封包,并根据负荷分担策略在剩下的链路中重新计算报文的发送端口,故障端口恢复后再次担任发送端口.链路聚合在增加链路带宽,实现链路传输弹性和工程冗余等方面是一项很重要的技术. 网卡的链路聚合一般常用的有"bond"(网络绑