DSP using MATlAB 示例Example2.10

上代码

% noise sequence 1
x = [3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];            % given signal x(n)
[y,ny] = sigshift(x,nx,2);                           % obtain x(n-2)

set(gcf,‘Color‘,‘white‘)
subplot(2,1,1);stem(nx,x); title(‘sequence x(n)‘);
xlabel(‘n‘);ylabel(‘x(n)‘); grid on
subplot(2,1,2);stem(ny,y);title(‘sequence x(n-2)‘)
xlabel(‘n‘);ylabel(‘x(n-2)‘); grid on

w = randn(1,length(y)); nw = ny;                     % generate w(n)
[y,ny] = sigadd(y,ny,w,nw);                          % obtain y(n)=x(n-2)+w(n)
[x,nx] = sigfold(x,nx);                              % obtain x(-n)
[rxy,nrxy] = conv_m(y,ny,x,nx);                      % crosscorrelation

figure
set(gcf,‘Color‘,‘white‘)
subplot(1,1,1), subplot(2,1,1); stem(nrxy,rxy);
axis([-5,10,-50,250]); xlabel(‘lag variable 1‘)
ylabel(‘rxy‘); title(‘crosscorrelation: noise sequence 1‘)
grid on
%
% noise sequence 2
x = [3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];            % given signal x(n)
[y,ny] = sigshift(x,nx,2);                           % obtain x(n-2)
w = randn(1,length(y)); nw = ny;                     % generate w(n)
[y,ny] = sigadd(y,ny,w,nw);                          % obtain y(n)=x(n-2)+w(n)
[x,nx] = sigfold(x,nx);                              % obtain x(-n)
[rxy,nrxy] = conv_m(y,ny,x,nx);                      % crosscorrelation
subplot(2,1,2); stem(nrxy,rxy)
axis([-5,10,-50,250]);xlabel(‘lag variable 1‘)
ylabel(‘rxy‘); title(‘crosscorrelation: noise sequence 2‘)
grid on

结果:

  

时间: 2024-08-06 03:45:49

DSP using MATlAB 示例Example2.10的相关文章

DSP using MATLAB 示例Example2.12

代码: b = [1]; a = [1, -0.9]; n = [-5:50]; h = impz(b,a,n); set(gcf,'Color','white'); %subplot(2,1,1); stem(n,h); title('Impulse Response'); xlabel('n'); ylabel('h(n)'); grid on; x = stepseq(0, -5, 50) - stepseq(10, -5, 50) y = filter(b, a, x); figure;

DSP using MATLAB 示例Example2.4

n = [0:10]; x = stepseq(0,0,10) - stepseq(10,0,10); [xe,xo,m] = evenodd(x,n); set(gcf,'Color',[1,1,1]) % 改变坐标外围背景颜色 stem(n,x); title('Rectangular Pulse'); xlabel('n'); ylabel('x(n)') ; axis([-10,10,0,1.2]) grid on figure set(gcf,'Color',[1,1,1]) stem

DSP using MATLAB 示例Example2.3

n = [-10:1:10]; alpha = -0.1+0.3j; % x = exp(alpha*n); % subplot(2,1,1); set(gcf,'Color',[1,1,1]) % 改变坐标外围背景颜色 stem(n,real(x)); title('real part'); xlabel('n'); grid on figure set(gcf,'Color','white') % 新生成一张图 stem(n,imag(x)); title('imaginary part')

DSP using Matlab 示例Example2.2

a. n = -2:10; x = [1:7,6:-1:1]; % generate x(n) [x11,n11] = sigshift(x,n,5); [x12,n12] = sigshift(x,n,-4); [x1,n1] = sigadd(2 * x11, n11, -3 * x12, n12); set(gcf,'Color',[1,1,1]) % 改变坐标外围背景颜色 stem(n,x); title('Sequence x(n)') xlabel('n');ylabel('x(n)

DSP using MATLAB 示例Example2.11

上代码: b = [1]; a = [1, -1, 0.9]; n = [-20:120]; h = impz(b,a,n); set(gcf,'Color','white'); %subplot(2,1,1); stem(n,h); title('Impulse Response'); xlabel('n'); ylabel('h(n)'); grid on; x = stepseq(0,-20, 120); s = filter(b,a,x); figure; set(gcf,'Color'

DSP using MATLAB 示例Example3.21

代码: % Discrete-time Signal x1(n) % Ts = 0.0002; n = -25:1:25; nTs = n*Ts; Fs = 1/Ts; x = exp(-1000*abs(nTs)); Ts = 0.001; n = -5:1:5; nTs = n*Ts; Fs = 1/Ts; x = exp(-1000*abs(nTs)); % Analog Signal Dt = 0.00005; t = -0.005:Dt:0.005; xa = x * sinc(Fs*

DSP using MATLAB示例Example3.18

代码: % Analog Signal Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t)); % Continuous-time Fourier Transform Wmax = 2*pi*2000; K = 500; k = 0:1:K; % index array k for frequencies W = k*Wmax/K; % freqency between 0 and +pi, [0,pi] axis divided i

DSP using MATLAB 示例 Example3.19

代码: % Analog Signal Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t)); % Discrete-time Signal Ts = 0.0002; n = -25:1:25; x = exp(-1000*abs(n*Ts)); % Discrete-time Fourier Transform %Wmax = 2*pi*2000; K = 500; k = 0:1:K; w = pi*k/K; % index ar

DSP using MATLAB 示例Example3.7

上代码: x1 = rand(1,11); x2 = rand(1,11); n = 0:10; alpha = 2; beta = 3; k = 0:500; w = (pi/500)*k; % [0,pi] axis divided into 501 points. X1 = x1 * (exp(-j*pi/500)) .^ (n'*k); % DTFT of x1 X2 = x2 * (exp(-j*pi/500)) .^ (n'*k); % DTFT of x2 x = alpha *