Maximum Likelihood 最大似然估计

这个算法解决的问题是,当我们知道一组变量的密度分布函数与从总体采样的个体的时候,需要估计函数中的某些变量。

假设概率密度函数如下:

一般来说,为了计算的方便性,我们会采取对数的方式

现在的目标是要使得上面函数取最大值,自变量为Θ,并且可以是一个向量。

求上面函数最大值,需要用到函数的一阶导数,求极值点,最终判断所要求的点。

Reference:

http://en.wikipedia.org/wiki/Maximum_likelihood

时间: 2024-10-05 14:08:05

Maximum Likelihood 最大似然估计的相关文章

Maximum likelihood (最大似然估计法)

最大似然估计法的基本思想 最大似然估计法的思想很简单:在已经得到试验结果的情况下,我们应该寻找使这个结果出现的可能性最大的那个 作为真 的估计. 我们分两种情进行分析: 1.离散型总体 设 为离散型随机变量,其概率分布的形式为 ,则样本 的概率分布为 ,在 固定时,上式表示 取值 的概率:当 固定时,它是 的函数,我们把它记为 并称为似然函数.似然函数 的值的大小意味着该样本值出现的可能性的大小.既然已经得到了样本值 ,那它出现的可能性应该是大的,即似然函数的值应该是大的.因而我们选择使 达到最

机器学习2-极大似然估计与贝叶斯估计

参数估计:最大似然.贝叶斯与最大后验 为什么会有参数估计呢?这要源于我们对所研究问题的简化和假设.我们在看待一个问题的时候,经常会使用一些我们所熟知的经典的模型去简化问题,就像我们看一个房子,我们想到是不是可以把它看成是方形一样.如果我们已经知道这个房子是三间平房,那么大体上我们就可以用长方体去描述它的轮廓.这个画房子的问题就从无数的可能性中,基于方圆多少里大家都住平房的经验,我们可以假设它是长方体,剩下的问题就是确定长宽高这三个参数了,问题被简化了.再如学生考试的成绩,根据既往的经验,我们可以

【MLE】最大似然估计Maximum Likelihood Estimation

模型已定,参数未知 最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独

先验概率、后验概率、似然估计,似然函数、贝叶斯公式

联合概率的乘法公式: (如果随机变量是独立的,则)  由乘法公式可得条件概率公式:, , 全概率公式:,其中 (,则,则可轻易推导出上式) 贝叶斯公式: 又名后验概率公式.逆概率公式:后验概率=似然函数×先验概率/证据因子.解释如下,假设我们根据“手臂是否很长”这个随机变量(取值为“手臂很长”或“手臂不长”)的观测样本数据来分析远处一个生物是猩猩类别还是人类类别(假设总共只有这2种类别).我们身处一个人迹罕至的深山老林里,且之前就有很多报道说这里有猩猩出没,所以无需观测样本数据就知道是猩猩的先验

【机器学习算法-python实现】最大似然估计(Maximum Likelihood)

1.背景 最大似然估计是概率论中常常涉及到的一种统计方法.大体的思想是,在知道概率密度f的前提下,我们进行一次采样,就可以根据f来计算这个采样实现的可能性.当然最大似然可以有很多变化,这里实现一种简单的,实际项目需要的时候可以再更改. 博主是参照wiki来学习的,地址请点击我 这里实现的是特别简单的例子如下(摘自wiki的最大似然) 离散分布,离散有限参数空间[编辑] 考虑一个抛硬币的例子.假设这个硬币正面跟反面轻重不同.我们把这个硬币抛80次(即,我们获取一个采样并把正面的次数记下来,正面记为

极大似然估计(maximum likelihood estimination)教程

极大似然估计法是求点估计的一种方法,最早由高斯提出,后来费歇尔(Fisher)在1912年重新提出.它属于数理统计的范畴. 大学期间我们都学过概率论和数理统计这门课程. 概率论和数理统计是互逆的过程.概率论可以看成是由因推果,数理统计则是由果溯因. 用两个简单的例子来说明它们之间的区别. 由因推果(概率论) 例1:设有一枚骰子,2面标记的是"正",4面标记的是"反".共投掷10次,问:5次"正"面朝上的概率? 解:记 "正面"

最大似然估计实例 | Fitting a Model by Maximum Likelihood (MLE)

参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定了数据集,所以该函数就是以模型参数为自变量的函数,通过求导我们就能得到使得该函数值(似然值)最大的模型参数了. Maximum-Likelihood Estimation (MLE) is a statistical technique for estimating model parameters

似然估计与后验概率

1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知".例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,那

B-概率论-极大似然估计

目录 极大似然估计 一.最大似然原理 二.极大似然估计 三.似然函数 四.极大似然函数估计值 五.求解极大似然函数 5.1 未知参数只有一个 5.2 位置参数有多个 5.3 总结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 极大似然估计 一.最大似然原理 二.极大似然估计 极大似然估计是建立在最大似然原理的基础上的一个统计方法.极大似然估计提供了一种给定观察数据来