题意:给定一个图,0是不能放的,然后现在有1X1和1X2方块,最后铺满该图,使得1X1使用次数在C到D之间,1X2次数随便,问有几种放法。
思路:经典问题多米诺的拓展,状态多开一维表示用了几个1*1砖块即可,注意位运算的优先级。
#include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<queue> #include<stack> #include<string> #include<map> #include<set> #define eps 1e-6 #define LL long long #define pii (pair<int, int>) //#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int INF = 0x3f3f3f3f; const int mod = 1000000007; int n, m, cur, C, D; const int maxn = 11; LL d[2][1<<maxn][25]; char G[150][maxn]; int main() { // freopen("input.txt", "r", stdin); while(scanf("%d%d%d%d", &n, &m, &C, &D) == 4) { for(int i = 0; i < n; i++) { getchar(); for(int j = 0; j < m; j++) scanf("%c", &G[i][j]); } cur = 0; memset(d[cur], 0, sizeof(d[cur])); d[cur][(1<<m)-1][0] = 1; for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) { cur ^= 1; memset(d[cur], 0, sizeof(d[cur])); for(int k = 0; k < (1<<m); k++) { if(G[i][j] == '1') { if((k&(1<<(m-1))) || (i&&G[i-1][j]=='0')) for(int l = 0; l <= D; l++) d[cur][(k<<1)&(~(1<<m))][l] += d[1-cur][k][l], d[cur][(k<<1)&(~(1<<m))][l] %= mod; //不放 if(i && !(k&(1<<(m-1))) && G[i-1][j]!='0') for(int l = 0; l <= D; l++) d[cur][(k<<1)+1][l] += d[1-cur][k][l], d[cur][(k<<1)+1][l] %= mod; //竖放1*2 if(j && G[i][j-1]!='0' && !(k&1) && ((k&(1<<(m-1)))||i&&G[i-1][j]=='0')) for(int l = 0; l <= D; l++) d[cur][(k<<1)&(~(1<<m))|3][l] += d[1-cur][k][l], d[cur][(k<<1)&(~(1<<m))|3][l] %= mod; //右放1*2 if((k&(1<<(m-1))) || i&&G[i-1][j]=='0') for(int l = 0; l < D; l++) d[cur][((k<<1)&(~(1<<m)))+1][l+1] += d[1-cur][k][l], d[cur][((k<<1)&(~(1<<m)))+1][l+1] %= mod; //放1*1 } else { if((k&(1<<(m-1))) || i&&G[i-1][j]=='0') for(int l = 0; l <= D; l++) d[cur][(k<<1)&(~(1<<m))][l] += d[1-cur][k][l], d[cur][(k<<1)&(~(1<<m))][l] %= mod; } } } LL ans = 0; int s = (1<<m)-1; for(int i = 0; i < m; i++) if(G[n-1][i] == '0') s ^= (1<<(m-i-1)); //cout << s << endl; for(int i = C; i <= D; i++) ans += d[cur][s][i], ans %= mod; //cout << d[1-cur][s][0] << endl; cout << ans << endl; //for(int i = C; i <= D; i++) cout << d[1-cur][2][0] << endl; //cout << G[0][0] << G[0][1] << endl; } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-12-20 01:17:37