Device Tree(三):代码分析【转】

转自:http://www.wowotech.net/linux_kenrel/dt-code-analysis.html

Device Tree(三):代码分析

作者:linuxer 发布于:2014-6-6 16:03 分类:统一设备模型

一、前言

Device Tree总共有三篇,分别是:

1、为何要引入Device Tree,这个机制是用来解决什么问题的?(请参考引入Device Tree的原因

2、Device Tree的基础概念(请参考DT基础概念

3、ARM linux中和Device Tree相关的代码分析(这是本文的主题)

本文主要内容是:以Device Tree相关的数据流分析为索引,对ARM linux kernel的代码进行解析。主要的数据流包括:

1、初始化流程。也就是扫描dtb并将其转换成Device Tree Structure。

2、传递运行时参数传递以及platform的识别流程分析

3、如何将Device Tree Structure并入linux kernel的设备驱动模型。

注:本文中的linux kernel使用的是3.14版本。

二、如何通过Device Tree完成运行时参数传递以及platform的识别功能?

1、汇编部分的代码分析

linux/arch/arm/kernel/head.S文件定义了bootloader和kernel的参数传递要求:

MMU = off, D-cache = off, I-cache = dont care, r0 = 0, r1 = machine nr, r2 = atags or dtb pointer.

目前的kernel支持旧的tag list的方式,同时也支持device tree的方式。r2可能是device tree binary file的指针(bootloader要传递给内核之前要copy到memory中),也可以能是tag list的指针。在ARM的汇编部分的启动代码中(主要是head.S和head-common.S),machine type ID和指向DTB或者atags的指针被保存在变量__machine_arch_type和__atags_pointer中,这么做是为了后续c代码进行处理。

2、和device tree相关的setup_arch代码分析

具体的c代码都是在setup_arch中处理,这个函数是一个总的入口点。具体代码如下(删除了部分无关代码):

void __init setup_arch(char **cmdline_p) 

    const struct machine_desc *mdesc;

……

mdesc = setup_machine_fdt(__atags_pointer); 
    if (!mdesc) 
        mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type); 
    machine_desc = mdesc; 
    machine_name = mdesc->name;

…… 
}

对于如何确定HW platform这个问题,旧的方法是静态定义若干的machine描述符(struct machine_desc ),在启动过程中,通过machine type ID作为索引,在这些静态定义的machine描述符中扫描,找到那个ID匹配的描述符。在新的内核中,首先使用setup_machine_fdt来setup machine描述符,如果返回NULL,才使用传统的方法setup_machine_tags来setup machine描述符。传统的方法需要给出__machine_arch_type(bootloader通过r1寄存器传递给kernel的)和tag list的地址(用来进行tag parse)。__machine_arch_type用来寻找machine描述符;tag list用于运行时参数的传递。随着内核的不断发展,相信有一天linux kernel会完全抛弃tag list的机制。

3、匹配platform(machine描述符)

setup_machine_fdt函数的功能就是根据Device Tree的信息,找到最适合的machine描述符。具体代码如下:

const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys) 

    const struct machine_desc *mdesc, *mdesc_best = NULL;

if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) 
        return NULL;

mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);

if (!mdesc) {  
        出错处理 
    }

/* Change machine number to match the mdesc we‘re using */ 
    __machine_arch_type = mdesc->nr;

return mdesc; 
}

early_init_dt_scan函数有两个功能,一个是为后续的DTB scan进行准备工作,另外一个是运行时参数传递。具体请参考下面一个section的描述。

of_flat_dt_match_machine是在machine描述符的列表中scan,找到最合适的那个machine描述符。我们首先看如何组成machine描述符的列表。和传统的方法类似,也是静态定义的。DT_MACHINE_START和MACHINE_END用来定义一个machine描述符。编译的时候,compiler会把这些machine descriptor放到一个特殊的段中(.arch.info.init),形成machine描述符的列表。machine描述符用下面的数据结构来标识(删除了不相关的member):

struct machine_desc { 
    unsigned int        nr;        /* architecture number    */ 
    const char *const     *dt_compat;    /* array of device tree ‘compatible‘ strings    */

……

};

nr成员就是过去使用的machine type ID。内核machine描述符的table有若干个entry,每个都有自己的ID。bootloader传递了machine type ID,指明使用哪一个machine描述符。目前匹配machine描述符使用compatible strings,也就是dt_compat成员,这是一个string list,定义了这个machine所支持的列表。在扫描machine描述符列表的时候需要不断的获取下一个machine描述符的compatible字符串的信息,具体的代码如下:

static const void * __init arch_get_next_mach(const char *const **match) 

    static const struct machine_desc *mdesc = __arch_info_begin; 
    const struct machine_desc *m = mdesc;

if (m >= __arch_info_end) 
        return NULL;

mdesc++; 
    *match = m->dt_compat; 
    return m; 
}

__arch_info_begin指向machine描述符列表第一个entry。通过mdesc++不断的移动machine描述符指针(Note:mdesc是static的)。match返回了该machine描述符的compatible string list。具体匹配的算法倒是很简单,就是比较字符串而已,一个是root node的compatible字符串列表,一个是machine描述符的compatible字符串列表,得分最低的(最匹配的)就是我们最终选定的machine type。

4、运行时参数传递

运行时参数是在扫描DTB的chosen node时候完成的,具体的动作就是获取chosen node的bootargs、initrd等属性的value,并将其保存在全局变量(boot_command_line,initrd_start、initrd_end)中。使用tag list方法是类似的,通过分析tag list,获取相关信息,保存在同样的全局变量中。具体代码位于early_init_dt_scan函数中:

bool __init early_init_dt_scan(void *params) 

    if (!params) 
        return false;

/* 全局变量initial_boot_params指向了DTB的header*/ 
    initial_boot_params = params;

/* 检查DTB的magic,确认是一个有效的DTB */ 
    if (be32_to_cpu(initial_boot_params->magic) != OF_DT_HEADER) { 
        initial_boot_params = NULL; 
        return false; 
    }

/* 扫描 /chosen node,保存运行时参数(bootargs)到boot_command_line,此外,还处理initrd相关的property,并保存在initrd_start和initrd_end这两个全局变量中 */ 
    of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);

/* 扫描根节点,获取 {size,address}-cells信息,并保存在dt_root_size_cells和dt_root_addr_cells全局变量中 */ 
    of_scan_flat_dt(early_init_dt_scan_root, NULL);

/* 扫描DTB中的memory node,并把相关信息保存在meminfo中,全局变量meminfo保存了系统内存相关的信息。*/ 
    of_scan_flat_dt(early_init_dt_scan_memory, NULL);

return true; 
}

设定meminfo(该全局变量确定了物理内存的布局)有若干种途径:

1、通过tag list(tag是ATAG_MEM)传递memory bank的信息。

2、通过command line(可以用tag list,也可以通过DTB)传递memory bank的信息。

3、通过DTB的memory node传递memory bank的信息。

目前当然是推荐使用Device Tree的方式来传递物理内存布局信息。

三、初始化流程

在系统初始化的过程中,我们需要将DTB转换成节点是device_node的树状结构,以便后续方便操作。具体的代码位于setup_arch->unflatten_device_tree中。

void __init unflatten_device_tree(void) 

    __unflatten_device_tree(initial_boot_params, &of_allnodes, 
                early_init_dt_alloc_memory_arch);

/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ 
    of_alias_scan(early_init_dt_alloc_memory_arch); 
}

我们用struct device_node 来抽象设备树中的一个节点,具体解释如下:

struct device_node { 
    const char *name;----------------------device node name 
    const char *type;-----------------------对应device_type的属性 
    phandle phandle;-----------------------对应该节点的phandle属性 
    const char *full_name; ----------------从“/”开始的,表示该node的full path

struct    property *properties;-------------该节点的属性列表 
    struct    property *deadprops; ----------如果需要删除某些属性,kernel并非真的删除,而是挂入到deadprops的列表 
    struct    device_node *parent;------parent、child以及sibling将所有的device node连接起来 
    struct    device_node *child; 
    struct    device_node *sibling; 
    struct    device_node *next;  --------通过该指针可以获取相同类型的下一个node 
    struct    device_node *allnext;-------通过该指针可以获取node global list下一个node 
    struct    proc_dir_entry *pde;--------开放到userspace的proc接口信息 
    struct    kref kref;-------------该node的reference count 
    unsigned long _flags; 
    void    *data; 
};

unflatten_device_tree函数的主要功能就是扫描DTB,将device node被组织成:

1、global list。全局变量struct device_node *of_allnodes就是指向设备树的global list

2、tree。

这些功能主要是在__unflatten_device_tree函数中实现,具体代码如下(去掉一些无关紧要的代码):

static void __unflatten_device_tree(struct boot_param_header *blob,---需要扫描的DTB 
                 struct device_node **mynodes,---------global list指针 
                 void * (*dt_alloc)(u64 size, u64 align))------内存分配函数 

    unsigned long size; 
    void *start, *mem; 
    struct device_node **allnextp = mynodes;

此处删除了health check代码,例如检查DTB header的magic,确认blob的确指向一个DTB。

/* scan过程分成两轮,第一轮主要是确定device-tree structure的长度,保存在size变量中 */ 
    start = ((void *)blob) + be32_to_cpu(blob->off_dt_struct); 
    size = (unsigned long)unflatten_dt_node(blob, 0, &start, NULL, NULL, 0); 
    size = ALIGN(size, 4);

/* 初始化的时候,并不是扫描到一个node或者property就分配相应的内存,实际上内核是一次性的分配了一大片内存,这些内存包括了所有的struct device_node、node name、struct property所需要的内存。*/ 
    mem = dt_alloc(size + 4, __alignof__(struct device_node)); 
    memset(mem, 0, size);

*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);   //用来检验后面unflattening是否溢出

/* 这是第二轮的scan,第一次scan是为了得到保存所有node和property所需要的内存size,第二次就是实打实的要构建device node tree了 */ 
    start = ((void *)blob) + be32_to_cpu(blob->off_dt_struct); 
    unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);

此处略去校验溢出和校验OF_DT_END。 
}

具体的scan是在unflatten_dt_node函数中,如果已经清楚地了解DTB的结构,其实代码很简单,这里就不再细述了。

四、如何并入linux kernel的设备驱动模型

在linux kernel引入统一设备模型之后,bus、driver和device形成了设备模型中的铁三角。在驱动初始化的时候会将代表该driver的一个数据结构(一般是xxx_driver)挂入bus上的driver链表。device挂入链表分成两种情况,一种是即插即用类型的bus,在插入一个设备后,总线可以检测到这个行为并动态分配一个device数据结构(一般是xxx_device,例如usb_device),之后,将该数据结构挂入bus上的device链表。bus上挂满了driver和device,那么如何让device遇到“对”的那个driver呢?那么就要靠缘分了,也就是bus的match函数。

上面是一段导论,我们还是回到Device Tree。导致Device Tree的引入ARM体系结构的代码其中一个最重要的原因的太多的静态定义的表格。例如:一般代码中会定义一个static struct platform_device *xxx_devices的静态数组,在初始化的时候调用platform_add_devices。这些静态定义的platform_device往往又需要静态定义各种resource,这导致静态表格进一步增大。如果ARM linux中不再定义这些表格,那么一定需要一个转换的过程,也就是说,系统应该会根据Device tree来动态的增加系统中的platform_device。当然,这个过程并非只是发生在platform bus上(具体可以参考“Platform Device”的设备),也可能发生在其他的非即插即用的bus上,例如AMBA总线、PCI总线。一言以蔽之,如果要并入linux kernel的设备驱动模型,那么就需要根据device_node的树状结构(root是of_allnodes)将一个个的device node挂入到相应的总线device链表中。只要做到这一点,总线机制就会安排device和driver的约会。

当然,也不是所有的device node都会挂入bus上的设备链表,比如cpus node,memory node,choose node等。

1、cpus node的处理

这部分的处理可以参考setup_arch->arm_dt_init_cpu_maps中的代码,具体的代码如下:

void __init arm_dt_init_cpu_maps(void) 

    scan device node global list,寻找full path是“/cpus”的那个device node。cpus这个device node只是一个容器,其中包括了各个cpu node的定义以及所有cpu node共享的property。 
    cpus = of_find_node_by_path("/cpus");

for_each_child_of_node(cpus, cpu) {           遍历cpus的所有的child node 
        u32 hwid;

if (of_node_cmp(cpu->type, "cpu"))        我们只关心那些device_type是cpu的node 
            continue;

if (of_property_read_u32(cpu, "reg", &hwid)) {    读取reg属性的值并赋值给hwid 
            return; 
        }

reg的属性值的8 MSBs必须设置为0,这是ARM CPU binding定义的。 
        if (hwid & ~MPIDR_HWID_BITMASK)   
            return;

不允许重复的CPU id,那是一个灾难性的设定 
        for (j = 0; j < cpuidx; j++) 
            if (WARN(tmp_map[j] == hwid, "Duplicate /cpu reg " 
                             "properties in the DT\n")) 
                return;

数组tmp_map保存了系统中所有CPU的MPIDR值(CPU ID值),具体的index的编码规则是: tmp_map[0]保存了booting CPU的id值,其余的CPU的ID值保存在1~NR_CPUS的位置。 
        if (hwid == mpidr) { 
            i = 0; 
            bootcpu_valid = true; 
        } else { 
            i = cpuidx++; 
        }

tmp_map[i] = hwid; 
    }

根据DTB中的信息设定cpu logical map数组。

for (i = 0; i < cpuidx; i++) { 
        set_cpu_possible(i, true); 
        cpu_logical_map(i) = tmp_map[i]; 
    } 
}

要理解这部分的内容,需要理解ARM CUPs binding的概念,可以参考linux/Documentation/devicetree/bindings/arm目录下的CPU.txt文件的描述。

2、memory的处理

这部分的处理可以参考setup_arch->setup_machine_fdt->early_init_dt_scan->early_init_dt_scan_memory中的代码。具体如下:

int __init early_init_dt_scan_memory(unsigned long node, const char *uname, 
                     int depth, void *data) 

    char *type = of_get_flat_dt_prop(node, "device_type", NULL); 获取device_type属性值 
    __be32 *reg, *endp; 
    unsigned long l;

在初始化的时候,我们会对每一个device node都要调用该call back函数,因此,我们要过滤掉那些和memory block定义无关的node。和memory block定义有的节点有两种,一种是node name是[email protected]形态的,另外一种是node中定义了device_type属性并且其值是memory。 
    if (type == NULL) { 
        if (depth != 1 || strcmp(uname, "[email protected]") != 0) 
            return 0; 
    } else if (strcmp(type, "memory") != 0) 
        return 0;

获取memory的起始地址和length的信息。有两种属性和该信息有关,一个是linux,usable-memory,不过最新的方式还是使用reg属性。

reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); 
    if (reg == NULL) 
        reg = of_get_flat_dt_prop(node, "reg", &l); 
    if (reg == NULL) 
        return 0;

endp = reg + (l / sizeof(__be32));

reg属性的值是address,size数组,那么如何来取出一个个的address/size呢?由于memory node一定是root node的child,因此dt_root_addr_cells(root node的#address-cells属性值)和dt_root_size_cells(root node的#size-cells属性值)之和就是address,size数组的entry size。

while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { 
        u64 base, size;

base = dt_mem_next_cell(dt_root_addr_cells, ®); 
        size = dt_mem_next_cell(dt_root_size_cells, ®);

early_init_dt_add_memory_arch(base, size);  将具体的memory block信息加入到内核中。 
    }

return 0; 
}

3、interrupt controller的处理

初始化是通过start_kernel->init_IRQ->machine_desc->init_irq()实现的。我们用S3C2416为例来描述interrupt controller的处理过程。下面是machine描述符的定义。

DT_MACHINE_START(S3C2416_DT, "Samsung S3C2416 (Flattened Device Tree)") 
…… 
    .init_irq    = irqchip_init, 
…… 
MACHINE_END

在driver/irqchip/irq-s3c24xx.c文件中定义了两个interrupt controller,如下:

IRQCHIP_DECLARE(s3c2416_irq, "samsung,s3c2416-irq", s3c2416_init_intc_of);

IRQCHIP_DECLARE(s3c2410_irq, "samsung,s3c2410-irq", s3c2410_init_intc_of);

当然,系统中可以定义更多的irqchip,不过具体用哪一个是根据DTB中的interrupt controller node中的compatible属性确定的。在driver/irqchip/irqchip.c文件中定义了irqchip_init函数,如下:

void __init irqchip_init(void) 

    of_irq_init(__irqchip_begin); 
}

__irqchip_begin就是所有的irqchip的一个列表,of_irq_init函数是遍历Device Tree,找到匹配的irqchip。具体的代码如下:

void __init of_irq_init(const struct of_device_id *matches) 

    struct device_node *np, *parent = NULL; 
    struct intc_desc *desc, *temp_desc; 
    struct list_head intc_desc_list, intc_parent_list;

INIT_LIST_HEAD(&intc_desc_list); 
    INIT_LIST_HEAD(&intc_parent_list);

遍历所有的node,寻找定义了interrupt-controller属性的node,如果定义了interrupt-controller属性则说明该node就是一个中断控制器。

for_each_matching_node(np, matches) { 
        if (!of_find_property(np, "interrupt-controller", NULL) || 
                !of_device_is_available(np)) 
            continue;

分配内存并挂入链表,当然还有根据interrupt-parent建立controller之间的父子关系。对于interrupt controller,它也可能是一个树状的结构。 
        desc = kzalloc(sizeof(*desc), GFP_KERNEL); 
        if (WARN_ON(!desc)) 
            goto err;

desc->dev = np; 
        desc->interrupt_parent = of_irq_find_parent(np); 
        if (desc->interrupt_parent == np) 
            desc->interrupt_parent = NULL; 
        list_add_tail(&desc->list, &intc_desc_list); 
    }

正因为interrupt controller被组织成树状的结构,因此初始化的顺序就需要控制,应该从根节点开始,依次递进到下一个level的interrupt controller。 
    while (!list_empty(&intc_desc_list)) {  intc_desc_list链表中的节点会被一个个的处理,每处理完一个节点就会将该节点删除,当所有的节点被删除,整个处理过程也就是结束了。 
         
        list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { 
            const struct of_device_id *match; 
            int ret; 
            of_irq_init_cb_t irq_init_cb;

最开始的时候parent变量是NULL,确保第一个被处理的是root interrupt controller。在处理完root node之后,parent变量被设定为root interrupt controller,因此,第二个循环中处理的是所有parent是root interrupt controller的child interrupt controller。也就是level 1(如果root是level 0的话)的节点。

if (desc->interrupt_parent != parent) 
                continue;

list_del(&desc->list);      -----从链表中删除 
            match = of_match_node(matches, desc->dev);-----匹配并初始化 
            if (WARN(!match->data,----------match->data是初始化函数 
                "of_irq_init: no init function for %s\n", 
                match->compatible)) { 
                kfree(desc); 
                continue; 
            }

irq_init_cb = (of_irq_init_cb_t)match->data; 
            ret = irq_init_cb(desc->dev, desc->interrupt_parent);-----执行初始化函数 
            if (ret) { 
                kfree(desc); 
                continue; 
            }

处理完的节点放入intc_parent_list链表,后面会用到 
            list_add_tail(&desc->list, &intc_parent_list); 
        }

对于level 0,只有一个root interrupt controller,对于level 1,可能有若干个interrupt controller,因此要遍历这些parent interrupt controller,以便处理下一个level的child node。 
        desc = list_first_entry_or_null(&intc_parent_list, 
                        typeof(*desc), list); 
        if (!desc) { 
            pr_err("of_irq_init: children remain, but no parents\n"); 
            break; 
        } 
        list_del(&desc->list); 
        parent = desc->dev; 
        kfree(desc); 
    }

list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) { 
        list_del(&desc->list); 
        kfree(desc); 
    } 
err: 
    list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) { 
        list_del(&desc->list); 
        kfree(desc); 
    } 
}

只有该node中有interrupt-controller这个属性定义,那么linux kernel就会分配一个interrupt controller的描述符(struct intc_desc)并挂入队列。通过interrupt-parent属性,可以确定各个interrupt controller的层次关系。在scan了所有的Device Tree中的interrupt controller的定义之后,系统开始匹配过程。一旦匹配到了interrupt chip列表中的项次后,就会调用相应的初始化函数。如果CPU是S3C2416的话,匹配到的是irqchip的初始化函数是s3c2416_init_intc_of。

OK,我们已经通过compatible属性找到了适合的interrupt controller,那么如何解析reg属性呢?我们知道,对于s3c2416的interrupt controller而言,其#interrupt-cells的属性值是4,定义为<ctrl_num type="" ctrl_irq="" parent_irq="">。每个域的解释如下:

(1)ctrl_num表示使用哪一种类型的interrupt controller,其值的解释如下:

- 0 ... main controller 
      - 1 ... sub controller 
      - 2 ... second main controller

(2)parent_irq。对于sub controller,parent_irq标识了其在main controller的bit position。

(3)ctrl_irq标识了在controller中的bit位置。

(4)type标识了该中断的trigger type,例如:上升沿触发还是电平触发。

为了更顺畅的描述后续的代码,我需要简单的介绍2416的中断控制器,其block diagram如下:

53个Samsung2416的中断源被分成两种类型,一种是需要sub寄存器进行控制的,例如DMA,系统中的8个DMA中断是通过两级识别的,先在SRCPND寄存器中得到是DMA中断的信息,具体是哪一个channel的DMA中断需要继续查询SUBSRC寄存器。那些不需要sub寄存器进行控制的,例如timer,5个timer的中断可以直接从SRCPND中得到。 
中断MASK寄存器可以控制产生的中断是否要报告给CPU,当一个中断被mask的时候,虽然SRCPND寄存器中,硬件会set该bit,但是不会影响到INTPND寄存器,从而不会向CPU报告该中断。对于SUBMASK寄存器,如果该bit被set,也就是该sub中断被mask了,那么即便产生了对应的sub中断,也不会修改SRCPND寄存器的内容,只是修改SUBSRCPND中寄存器的内容。

不过随着硬件的演化,更多的HW block加入到SOC中,这使得中断源不够用了,因此中断寄存器又被分成两个group,一个是group 1(开始地址是0X4A000000,也就是main controller了),另外一个是group2(开始地址是0X4A000040,叫做second main controller)。group 1中的sub寄存器的起始地址是0X4A000018(也就是sub controller)。

了解了上面的内容后,下面的定义就比较好理解了:

static struct s3c24xx_irq_of_ctrl s3c2416_ctrl[] = { 
    { 
        .name = "intc", -----------main controller 
        .offset = 0, 
    }, { 
        .name = "subintc", ---------sub controller 
        .offset = 0x18, 
        .parent = &s3c_intc[0], 
    }, { 
        .name = "intc2", ----------second main controller 
        .offset = 0x40, 
    } 
};

对于s3c2416而言,irqchip的初始化函数是s3c2416_init_intc_of,s3c2416_ctrl作为参数传递给了s3c_init_intc_of,大部分的处理都是在s3c_init_intc_of函数中完成的,由于这个函数和中断子系统非常相关,这里就不详述了,后续会有一份专门的文档描述之。

4、GPIO controller的处理

暂不描述,后续会有一份专门的文档描述GPIO sub system。

5、machine初始化

machine初始化的代码可以沿着start_kernel->rest_init->kernel_init->kernel_init_freeable->do_basic_setup->do_initcalls路径寻找。在do_initcalls函数中,kernel会依次执行各个initcall函数,在这个过程中,会调用customize_machine,具体如下:

static int __init customize_machine(void) 
{

if (machine_desc->init_machine) 
        machine_desc->init_machine(); 
    else 
        of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);

return 0; 

arch_initcall(customize_machine);

在这个函数中,一般会调用machine描述符中的init_machine callback函数来把各种Device Tree中定义的platform device设备节点加入到系统(即platform bus的所有的子节点,对于device tree中其他的设备节点,需要在各自bus controller初始化的时候自行处理)。如果machine描述符中没有定义init_machine函数,那么直接调用of_platform_populate把所有的platform device加入到kernel中。对于s3c2416,其machine描述符中的init_machine callback函数就是s3c2416_dt_machine_init,代码如下:

static void __init s3c2416_dt_machine_init(void) 

    of_platform_populate(NULL, --------传入NULL参数表示从root node开始scan

of_default_bus_match_table, s3c2416_auxdata_lookup, NULL);

s3c_pm_init(); --------power management相关的初始化 
}

由此可见,最终生成platform device的代码来自of_platform_populate函数。该函数的逻辑比较简单,遍历device node global list中所有的node,并调用of_platform_bus_create处理,of_platform_bus_create函数代码如下:

static int of_platform_bus_create(struct device_node *bus,-------------要创建的那个device node 
                  const struct of_device_id *matches,-------要匹配的list 
                  const struct of_dev_auxdata *lookup,------附属数据 
                  struct device *parent, bool strict)---------------parent指向父节点。strict是否要求完全匹配 

    const struct of_dev_auxdata *auxdata; 
    struct device_node *child; 
    struct platform_device *dev; 
    const char *bus_id = NULL; 
    void *platform_data = NULL; 
    int rc = 0;

删除确保device node有compatible属性的代码。

auxdata = of_dev_lookup(lookup, bus);  在传入的lookup table寻找和该device node匹配的附加数据 
    if (auxdata) { 
        bus_id = auxdata->name;-----------------如果找到,那么就用附加数据中的静态定义的内容 
        platform_data = auxdata->platform_data; 
    }

ARM公司提供了CPU core,除此之外,它设计了AMBA的总线来连接SOC内的各个block。符合这个总线标准的SOC上的外设叫做ARM Primecell Peripherals。如果一个device node的compatible属性值是arm,primecell的话,可以调用of_amba_device_create来向amba总线上增加一个amba device。

if (of_device_is_compatible(bus, "arm,primecell")) { 
        of_amba_device_create(bus, bus_id, platform_data, parent); 
        return 0; 
    }

如果不是ARM Primecell Peripherals,那么我们就需要向platform bus上增加一个platform device了

dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent); 
    if (!dev || !of_match_node(matches, bus)) 
        return 0;

一个device node可能是一个桥设备,因此要重复调用of_platform_bus_create来把所有的device node处理掉。

for_each_child_of_node(bus, child) { 
        pr_debug("   create child: %s\n", child->full_name); 
        rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict); 
        if (rc) { 
            of_node_put(child); 
            break; 
        } 
    } 
    return rc; 
}

具体增加platform device的代码在of_platform_device_create_pdata中,代码如下:

static struct platform_device *of_platform_device_create_pdata( 
                    struct device_node *np, 
                    const char *bus_id, 
                    void *platform_data, 
                    struct device *parent) 

    struct platform_device *dev;

if (!of_device_is_available(np))---------check status属性,确保是enable或者OK的。 
        return NULL;

of_device_alloc除了分配struct platform_device的内存,还分配了该platform device需要的resource的内存(参考struct platform_device 中的resource成员)。当然,这就需要解析该device node的interrupt资源以及memory address资源。

dev = of_device_alloc(np, bus_id, parent); 
    if (!dev) 
        return NULL;

设定platform_device 中的其他成员 
    dev->dev.coherent_dma_mask = DMA_BIT_MASK(32); 
    if (!dev->dev.dma_mask) 
        dev->dev.dma_mask = &dev->dev.coherent_dma_mask; 
    dev->dev.bus = &platform_bus_type; 
    dev->dev.platform_data = platform_data;

if (of_device_add(dev) != 0) {------------------把这个platform device加入统一设备模型系统中 
        platform_device_put(dev); 
        return NULL; 
    }

return dev; 
}

原创文章,转发请注明出处。蜗窝科技www.wowotech.net。

时间: 2024-11-02 23:40:21

Device Tree(三):代码分析【转】的相关文章

【转】Device Tree(三):代码分析

原文网址:http://www.wowotech.net/linux_kenrel/dt-code-analysis.html 一.前言 Device Tree总共有三篇,分别是: 1.为何要引入Device Tree,这个机制是用来解决什么问题的?(请参考引入Device Tree的原因) 2.Device Tree的基础概念(请参考DT基础概念) 3.ARM linux中和Device Tree相关的代码分析(这是本文的主题) 本文主要内容是:以Device Tree相关的数据流分析为索引,

C#代码分析(第三周)

阅读下面程序,请回答如下问题: 问题1:这个程序要找的是符合什么条件的数? 问题2:这样的数存在么?符合这一条件的最小的数是什么? 问题3:在电脑上运行这一程序,你估计多长时间才能输出第一个结果?时间精确到分钟(电脑:单核CPU 4.0G Hz,内存和硬盘等资源充足). 问题4:在多核电脑上如何提高这一程序的运行效率? 1 using System; 2 3 using System.Collections.Generic; 4 5 using System.Text; 6 7 namespac

Device Tree(二):基本概念

转自:http://www.wowotech.net/linux_kenrel/dt_basic_concept.html 一.前言 一些背景知识(例如:为何要引入Device Tree,这个机制是用来解决什么问题的)请参考引入Device Tree的原因,本文主要是介绍Device Tree的基础概念. 简单的说,如果要使用Device Tree,首先用户要了解自己的硬件配置和系统运行参数,并把这些信息组织成Device Tree source file.通过DTC(Device Tree C

Device Tree

设备树笔记 参考资料:http://www.wowotech.net/linux_kenrel/why-dt.html 一.背景 设想一下:bootloader将Linux内核复制到内存中,然后跳到内核的入口点开始执行.此时内核就像运行在处理器上的一个裸机程序.需要配置处理器,设置虚拟内存,向控制台打印一些信息.但是这些事情如何完成?所有的这些操作都要通过写寄存器来实现,但Linux内核如何知道这些寄存器的地址?如何知道当前有多少个CPU核可以使用?有多少内存可以访问?最直接的办法就是在内核代码

linux device tree源代码解析--转

//Based on Linux v3.14 source code Linux设备树机制(Device Tree) 一.描述 ARM Device Tree起源于OpenFirmware (OF),在过去的Linux中,arch/arm/plat-xxx和arch/arm/mach-xxx 中充斥着大量的垃圾代码,相当多数的代码只是在描述板级细节,而这些板级细节对于内核来讲,不过是垃圾,如板上的platform设备. resource.i2c_board_info.spi_board_info

(DT系列四)驱动加载中, 如何取得device tree中的属性

本文以At91rm9200平台为例,从源码实现的角度来分析驱动加载时,Device tree的属性是如何取得的.一:系统级初始化DT_MACHINE_START 主要是定义"struct machine_desc"的类型,放在 section(".arch.info.init"),是初始化数据,Kernel 起来之后将被丢弃.#define DT_MACHINE_START(_name, _namestr) \static const struct machine_

Linux device tree 简要笔记

第一.DTS简介     在嵌入式设备上,可能有不同的主板---它们之间差异表现在主板资源不尽相同,比如I2C.SPI.GPIO等接口定义有差别,或者是Timer不同,等等.于是这就产生了BSP的一个说法.所谓BSP,即是是板级支持包,英文全名为:Board Support Package.是介于主板硬件和操纵系统之间的一层.每一个主板,都有自己对应的BSP文件.在kernel/arch/arm/mach-* 目录下,放置着不同主板的BSP文件,比如展讯的某一个项目的BSP文件为: 1 kern

Device Tree(一):背景介绍

原文网址:http://www.wowotech.net/device_model/why-dt.html 一.前言 作为一个多年耕耘在linux 2.6.23内核的开发者,各个不同项目中各种不同周边外设驱动的开发以及各种琐碎的.扯皮的俗务占据了大部分的时间.当有机会下载3.14的内核并准备学习的时候,突然发现linux kernel对于我似乎变得非常的陌生了,各种新的机制,各种framework.各种新的概念让我感到阅读内核代码变得举步维艰. 还好,剖析内核的热情还在,剩下的就交给时间的.首先

linux kernel的中断子系统之(七):GIC代码分析

一.前言 GIC(Generic Interrupt Controller)是ARM公司提供的一个通用的中断控制器,其architecture specification目前有四个版本,V1-V4(V2最多支持8个ARM core,V3/V4支持更多的ARM core,主要用于ARM64服务器系统结构).目前在ARM官方网站只能下载到Version 2的GIC architecture specification,因此,本文主要描述符合V2规范的GIC硬件及其驱动. 具体GIC硬件的实现形态有两