Tarjan 算法求强联通分量

转载自:http://blog.csdn.net/xinghongduo/article/details/6195337

还是没懂Tarjan算法的原理。但是感觉。讲的很有道理。

说到以Tarjan命名的算法,我们经常提到的有3个,其中就包括本文所介绍的求强连通分量的Tarjan算法。而提出此算法的普林斯顿大学的Robert E Tarjan教授也是1986年的图灵奖获得者。

首先明确几个概念。

  1. 强连通图。在一个强连通图中,任意两个点都通过一定路径互相连通。比如图一是一个强连通图,而图二不是。因为没有一条路使得点4到达点1、2或3。
  2. 强连通分量。在一个非强连通图中极大的强连通子图就是该图的强连通分量。比如图三中子图{1,2,3,5}是一个强连通分量,子图{4}是一个强连通分量。

关于Tarjan算法的伪代码和流程演示请到我的115网盘下载网上某大牛写的Doc(地址:http://u.115.com/file/f96af404d2<Tarjan算法.doc>)本文着重从另外一个角度,也就是针对tarjan的操作规则来讲解这个算法。

其实,tarjan算法的基础是DFS。我们准备两个数组Low和Dfn。Low数组是一个标记数组,记录该点所在的强连通子图所在搜索子树的根节点的 Dfn值(很绕嘴,往下看你就会明白),Dfn数组记录搜索到该点的时间,也就是第几个搜索这个点的。根据以下几条规则,经过搜索遍历该图(无需回溯)和 对栈的操作,我们就可以得到该有向图的强连通分量。

  1. 数组的初始化:当首次搜索到点p时,Dfn与Low数组的值都为到该点的时间。
  2. 堆栈:每搜索到一个点,将它压入栈顶。
  3. 当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’不在栈中,p的low值为两点的low值中较小的一个。
  4. 当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’在栈中,p的low值为p的low值和p’的dfn值中较小的一个。
  5. 每当搜索到一个点经过以上操作后(也就是子树已经全部遍历)的low值等于dfn值,则将它以及在它之上的元素弹出栈。这些出栈的元素组成一个强连通分量。
  6. 继续搜索(或许会更换搜索的起点,因为整个有向图可能分为两个不连通的部分),直到所有点被遍历。

由于每个顶点只访问过一次,每条边也只访问过一次,我们就可以在O(n+m)的时间内求出有向图的强连通分量。但是,这么做的原因是什么呢?

Tarjan算法的操作原理如下:

  1. Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说,强连通分量一定是有向图的某个深搜树子树。
  2. 可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。
  3. 这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
  4. 强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。
  5. 如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。

文章来源:http://www.cnblogs.com/saltless

时间: 2024-10-22 22:23:59

Tarjan 算法求强联通分量的相关文章

tarjan算法求强联通分量

昨天学到了一个新的算法tarjan算法,感觉最近都没有怎么学习了...(最近有个感悟啊,就是学习一定的通过实践来进步的. 现在才明白为什么高中的时候老师强调一定要刷题,当然刷完题目之后的总结也非常地重要! 这个tarjan算法用来求强联通分量,在网上看了几篇blog,然后做了一个题目,感觉这个算法很nice啊... 如果没有学这个算法, 我肯定会想直接dfs吧orz... dfs看看是不是每个点能到达连通分量的其他点,好像这样非常麻烦啊,还要记录这个点从哪里来的...这样一想,好像直接dfs我做

[ACM] HDU 1269 迷宫城堡(Tarjan算法求强联通分量)

迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 8099    Accepted Submission(s): 3623 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A

Tarjian算法求强联通分量

如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. Tarjan算法是用来求有向图的强连通分量的.求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的

tarjan算法 求所有联通分量

摘自:https://blog.csdn.net/qq_34374664/article/details/77488976  (感谢) tarjan算法,之所以用DFS就是因为它将每一个强连通分量作为搜索树上的一个子树.而这个图,就是一个完整的搜索树.为了使这颗搜索树在遇到强连通分量的节点的时候能顺利进行.每个点都有两个参数.1,DFN[]作为这个点搜索的次序编号(时间戳),简单来说就是 第几个被搜索到的.%每个点的时间戳都不一样%.2,LOW[]作为每个点在这颗树中的,最小的子树的根,每次保证

Tarjan算法求有向图强连通分量并缩点

// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<queue> using namespace std; const int N = 100010, M = 1000010; // int ver[M], Next[M], head[N],

USACO06JAN The Cow Prom /// tarjan求强联通分量 oj24219

题目大意: n个点 m条边的图 求大小大于1的强联通分量的个数 https://www.cnblogs.com/stxy-ferryman/p/7779347.html tarjan求完强联通分量并染色后 计算一下每种颜色的个数 就是每个强联通块的大小 #include <stdio.h> #include <cstring> #include <algorithm> #include <stack> using namespace std; const i

hihoCoder#1185 : 连通性&#183;三 tarjan求强联通分量 缩点 dfs/拓扑排序求路径和最大值

题目链接: http://hihocoder.com/problemset/problem/1185# 题意: n个点,每个点有一个权值,m条有向边,从1出发,每走到一个点, 就吃掉这个点的草,当没有可以到达的草场或是能够到达的草场都已经被吃光了之后就要返回到1了.求最多可以吃掉多少草. 思路: 提示里面讲的挺好的 如果草场是一个强连通图,那么我们只要走到任意一点,就可以把其他所有的草场都走一遍,并且可以选择任意一个点作为终点.所以把强联通块缩成一个点 因为一个强连通块会被缩成一个点,那么我们可

tarjan求强联通分量 模板

1 void tarjan(int u) 2 { 3 dfn[u]=low[u]=++dfs_clock; 4 stack_push(u); 5 6 for (int c=head[u];c;c=nxt[c]) 7 { 8 int v=to[c]; 9 if (!dfn[v]) 10 { 11 tarjan(v); 12 low[u]=min(low[u],low[v]); 13 } 14 else if (!scc[v]) 15 low[u]=min(low[u],dfn[v]); 16 }

HDU 1269 迷宫城堡 (强联通分量,Tarjan算法)

Problem Description: 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间.Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i. Input: 输入包含多组数据