The size of the hash table is not determinate at the very beginning. If the total size of keys is too large (e.g. size >= capacity / 10), we should double the size of the hash table and rehash every keys. Say you have a hash table looks like below:
size=3
, capacity=4
[null, 21, 14, null]
↓ ↓
9 null
↓
null
The hash function is:
int hashcode(int key, int capacity) {
return key % capacity;
}
here we have three numbers, 9, 14 and 21, where 21 and 9 share the same position as they all have the same hashcode 1 (21 % 4 = 9 % 4 = 1). We store them in the hash table by linked list.
rehashing this hash table, double the capacity, you will get:
size=3
, capacity=8
index: 0 1 2 3 4 5 6 7
hash : [null, 9, null, null, null, 21, 14, null]
Given the original hash table, return the new hash table after rehashing .
Notice
For negative integer in hash table, the position can be calculated as follow:
- C++/Java: if you directly calculate -4 % 3 you will get -1. You can use function: a % b = (a % b + b) % b to make it is a non negative integer.
- Python: you can directly use -1 % 3, you will get 2 automatically.
Example
Given [null, 21->9->null, 14->null, null]
,
return [null, 9->null, null, null, null, 21->null, 14->null, null]
/** * Definition for ListNode * public class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { /** * @param hashTable: A list of The first node of linked list * @return: A list of The first node of linked list which have twice size */ public ListNode[] rehashing(ListNode[] hashTable) { // write your code here if(hashTable == null || hashTable.length == 0) return hashTable; int size = hashTable.length; ListNode[] res = new ListNode[2 * size]; for(int i = 0; i < size; i++){ if(hashTable[i] != null){ ListNode p = hashTable[i]; while(p != null){ int index = (p.val % (2 * size) + 2 * size) % (2 * size); if(res[index] == null){ res[index] = new ListNode(p.val); } else{ ListNode temp = res[index]; while(temp.next != null){ temp = temp.next; } temp.next = new ListNode(p.val); } p = p.next; } } } return res; } };