最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用

最大似然估计 MLE

给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。

例如,对于线性回归,我们假定样本是服从正态分布,但是不知道均值和方差;或者对于逻辑回归,我们假定样本是服从二项分布,但是不知道均值,逻辑回归公式得到的是因变量y的概率P = g(x), x为自变量,通过逻辑函数得到一个概率值,y对应离散值为0或者1,Y服从二项分布,误差项服从二项分布,而非高斯分布,所以不能用最小二乘进行模型参数估计,可以用极大似然估计来进行参数估计; 因此最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数。MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大:

其中就是似然函数,表示在参数下出现观测数据的概率。我们假设每个观测数据是独立的,那么有

为了求导方便,一般对目标取log。 所以最优化对似然函数等同于最优化对数似然函数:

举一个抛硬币的简单例子。 现在有一个正反面不是很匀称的硬币,如果正面朝上记为H,方面朝上记为T,抛10次的结果如下:

求这个硬币正面朝上的概率有多大?

很显然这个概率是0.2。现在我们用MLE的思想去求解它。我们知道每次抛硬币都是一次二项分布,设正面朝上的概率是,那么似然函数为:

x=1表示正面朝上,x=0表示方面朝上。那么有:

求导:

令导数为0,很容易得到:

也就是0.2 。

 

 

 最大后验概率  MAP

以上MLE求的是找出一组能够使似然函数最大的参数,即。 现在问题稍微复杂一点点,假如这个参数有一个先验概率呢?比如说,在上面抛硬币的例子,假如我们的经验告诉我们,硬币一般都是匀称的,也就是=0.5的可能性最大,=0.2的可能性比较小,那么参数该怎么估计呢?这就是MAP要考虑的问题。 MAP优化的是一个后验概率,即给定了观测值后使概率最大:

把上式根据贝叶斯公式展开:

我们可以看出第一项就是似然函数,第二项就是参数的先验知识。取log之后就是:

回到刚才的抛硬币例子,假设参数有一个先验估计,它服从Beta分布,即:

而每次抛硬币任然服从二项分布:

那么,目标函数的导数为:

求导的第一项已经在上面MLE中给出了,第二项为:

令导数为0,求解为:

其中,表示正面朝上的次数。这里看以看出,MLE与MAP的不同之处在于,MAP的结果多了一些先验分布的参数。

补充知识: Beta分布

Beat分布是一种常见的先验分布,它形状由两个参数控制,定义域为[0,1]

Beta分布的最大值是x等于的时候:

所以在抛硬币中,如果先验知识是说硬币是匀称的,那么就让。 但是很显然即使它们相等,它两的值也对最终结果很有影响。它两的值越大,表示偏离匀称的可能性越小:

时间: 2024-08-09 03:16:49

最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用的相关文章

机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

目录 机器学习基础 1. 概率和统计 2. 先验概率 3. 后验概率 4. 似然函数 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率(MAE)-贝叶斯公式 总结:先验概率 后验概率以及似然函数的关系 机器学习基础 1. 概率和统计 概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 顾名思义: 概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等). 统计研究的问题则相

最大似然估计 (MLE) 最大后验概率(MAP)

1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,那么有 为了

深度学习中交叉熵和KL散度和最大似然估计之间的关系

机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l

最大似然估计(MLE)和最大后验概率(MAP)

最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为

【机器学习基本理论】详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识. 但别急,我们先从概率和统计的区别讲起. 1概率和统计是一个东西吗?   概率(probabilt

最大似然估计和最大后验概率MAP

最大似然估计是一种奇妙的东西,我觉得发明这种估计的人特别才华.如果是我,觉得很难凭空想到这样做. 极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点.频率派认为,参数是客观存在的,只是未知而矣.因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示: 相反的,贝叶斯派认为参数也是随机的,和一般随机变量没有本质区别,正是因为参数不能固定,当给定一个输入x后,我们不能用一个确定的y表示输出结果,必须用一个概率的方式表达出来,所以贝叶斯学派的预测值是一

先验概率、最大似然估计、贝叶斯估计、最大后验概率

先验概率 先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率. 先验概率的分类 利用过去历史资料计算得到的先验概率,称为客观先验概率: 当历史资料无从取得或资料不完全时,凭人们的主观经验来判断而得到的先验概率,称为主观先验概率. 先验概率的条件 先验概率是通过古典概率模型加以定义的,故又称为古典概率.古典概率模型要求满足两个条件:(1)试验的所有可能结果是有限的;(2)每一种可

最大似然估计与最大后验概率估计

本文转自http://blog.csdn.net/sunmenggmail/article/details/13004675 1. 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差.最大似然就是寻找最可能的参数,使得这些采样样

最大似然估计实例 | Fitting a Model by Maximum Likelihood (MLE)

参考:Fitting a Model by Maximum Likelihood 最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定了数据集,所以该函数就是以模型参数为自变量的函数,通过求导我们就能得到使得该函数值(似然值)最大的模型参数了. Maximum-Likelihood Estimation (MLE) is a statistical technique for estimating model parameters