Legal or Not(拓扑排序判环)

http://acm.hdu.edu.cn/showproblem.php?pid=3342

Legal or Not

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5788    Accepted Submission(s): 2678

Problem Description

ACM-DIY is a large QQ group where many excellent acmers get together. It is so harmonious that just like a big family. Every day,many "holy cows" like HH, hh, AC, ZT, lcc, BF, Qinz and so on chat on-line to exchange their ideas. When someone has questions, many warm-hearted cows like Lost will come to help. Then the one being helped will call Lost "master", and Lost will have a nice "prentice". By and by, there are many pairs of "master and prentice". But then problem occurs: there are too many masters and too many prentices, how can we know whether it is legal or not?

We all know a master can have many prentices and a prentice may have a lot of masters too, it‘s legal. Nevertheless,some cows are not so honest, they hold illegal relationship. Take HH and 3xian for instant, HH is 3xian‘s master and, at the same time, 3xian is HH‘s master,which is quite illegal! To avoid this,please help us to judge whether their relationship is legal or not.

Please note that the "master and prentice" relation is transitive. It means that if A is B‘s master ans B is C‘s master, then A is C‘s master.

Input

The input consists of several test cases. For each case, the first line contains two integers, N (members to be tested) and M (relationships to be tested)(2 <= N, M <= 100). Then M lines follow, each contains a pair of (x, y) which means x is y‘s master and y is x‘s prentice. The input is terminated by N = 0.
TO MAKE IT SIMPLE, we give every one a number (0, 1, 2,..., N-1). We use their numbers instead of their names.

Output

For each test case, print in one line the judgement of the messy relationship.
If it is legal, output "YES", otherwise "NO".

Sample Input

3 2
0 1
1 2
2 2
0 1
1 0
0 0

Sample Output

YES
NO

题意:给出一个不一定联通的图,判断图中是否有环

题解:典型的拓扑排序判环,我又想到了暴力的dfs但是因为dfs要扫描所有的路径,所以超时了,也可以用强联通分量做

下面是拓扑排序的ac代码

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 using namespace std;
 5 #define N 150
 6 struct Edge{
 7     int to;
 8     int next;
 9 }edge[N];
10 int head[N];
11 int Enct;
12 int in[N];
13 void init()
14 {
15     Enct = 0;
16     memset(head,-1,sizeof(head));
17     memset(in,0,sizeof(in));
18 }
19 void add(int from , int to )
20 {
21     edge[Enct].to = to;
22     edge[Enct].next = head[from];
23     head[from]= Enct++;
24 }
25 int que[N];
26 int n;
27 bool ph()
28 {
29     int c = 0;
30     for(int i = 0 ; i < n ;i++)
31     {
32         if(in[i]==0) que[c++] = i;
33     }
34     for(int i = 0 ; i < c; i++)
35     {
36         for(int j = head[que[i]] ; j!=-1; j= edge[j].next)
37         {
38             Edge e = edge[j];
39             in[e.to]--;
40             if(in[e.to]==0)
41             que[c++] = e.to;
42         }
43     }
44     //printf("c = %d\n",c);
45     if(c<n-1) return false ;
46     else return true;
47 }
48 int main()
49 {
50     int m ;
51     while(~scanf("%d%d",&n,&m)&&(n!=0||m!=0))
52     {
53         init();
54         for(int i = 0 ;i < m ;i++)
55         {
56             int a , b;
57             scanf("%d%d",&a,&b);
58             add(a,b);
59             in[b]++;
60         }
61         if(ph()) printf("YES\n");
62         else printf("NO\n");
63     }
64
65     return 0;
66 }

下面是dfs超时的代码

 1 //这种遍历所有路径的方法一般会超时,真的超时了,嘎嘎
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<cstring>
 5 using namespace std;
 6 #define N 150
 7 int vis[N];
 8 int n ;
 9 struct Edge{
10     int to ;
11     int next;
12 }edge[N];
13 int head[N];
14 int Enct;
15 void init()
16 {
17     Enct = 0;
18     memset(head,-1,sizeof(head));
19     memset(vis,0,sizeof(vis));//标记0为未访问
20 }
21 void add(int from , int to )
22 {
23     edge[Enct].to = to;
24     edge[Enct].next = head[from];
25     head[from] = Enct++;
26 }
27 /*bool dfs(int i )
28 {
29     if(vis[i]) return false;
30     vis[i] = 1;
31     printf("vis[%d] = %d\n",i,vis[i]);
32     for(int j = head[i] ; j!=-1; j = edge[j].next)
33     {
34         Edge e = edge[j];
35         dfs(e.to);
36     }
37     return true;
38 }*/
39 bool tm = true;
40 bool dfs(int i )
41 {
42     vis[i]=1;
43     for(int j = head[i] ; j!=-1 ;j = edge[j].next)
44     {
45         Edge e = edge[j];
46         if(vis[e.to]==1) tm = false;
47         else
48         {
49             dfs(e.to);
50             vis[e.to]=0;//保证dfs走的是一条链,每次回溯的时候相当于走反向所以标记成未访问
51         }
52     }
53     return tm;
54 }
55 int main()
56 {
57     int m ;
58     while(~scanf("%d%d",&n,&m)&&(n!=0||m!=0))
59     {
60         init();
61         tm = true;
62         for(int i =0 ;i < m ;i++)
63         {
64             int a ,b;
65             scanf("%d%d",&a,&b);
66             add(a,b);
67         }
68         bool flag = true;
69         for(int i= 0; i < n ;i++)
70         {
71             if(flag == false) break;
72             if(vis[i]==0)
73                 flag = dfs(i);
74         }
75         if(flag) printf("YES\n");
76         else printf("NO\n");
77     }
78     return 0;
79 }
时间: 2025-01-31 00:43:19

Legal or Not(拓扑排序判环)的相关文章

HDU 3342 Legal or Not(拓扑排序判环)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3342 题目: Problem Description ACM-DIY is a large QQ group where many excellent acmers get together. It is so harmonious that just like a big family. Every day,many "holy cows" like HH, hh, AC, ZT, lc

拓扑排序判环

拓扑排序的核心就是每次找入度为0的点,进入输出队列 ,然后将与此点相连的节点入度减1重复做以上操作.当做n-1 次后还有点没进输出队列 那么这些点就是环上的 因为环上的各点入度都为1 没有0的 就不能更新.也就是说拓扑排序一遍之后,如果是DAG所有点都恰好入队一次如果有环,那么一定存在没有入队的点. 例题: Legal or NotTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Pr

LightOJ1003---Drunk(拓扑排序判环)

One of my friends is always drunk. So, sometimes I get a bit confused whether he is drunk or not. So, one day I was talking to him, about his drinks! He began to describe his way of drinking. So, let me share his ideas a bit. I am expressing in my wo

HDU1811 拓扑排序判环+并查集

HDU Rank of Tetris 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1811 题意:中文问题就不解释题意了. 这道题其实就是一个拓扑排序判圈,我的博客里面其他几篇拓扑排序判圈的套路一样.但是这道题与他们不同的的是在大小关系里面存在一种 "="的关系,这就意味的那些序号不同的点,实际上是一个点.共享入度和出度.我们可以通过并查集将他们合并,合成一个点.这里说一下如何判断信息不完全.我们早先在做拓扑排序,多种排列方式的时候,按照字

[hiho1174]拓扑排序一(拓扑排序判环)

时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 由于今天上课的老师讲的特别无聊,小Hi和小Ho偷偷地聊了起来. 小Ho:小Hi,你这学期有选什么课么? 小Hi:挺多的,比如XXX1,XXX2还有XXX3.本来想选YYY2的,但是好像没有先选过YYY1,不能选YYY2. 小Ho:先修课程真是个麻烦的东西呢. 小Hi:没错呢.好多课程都有先修课程,每次选课之前都得先查查有没有先修.教务公布的先修课程记录都是好多年前的,不但有重复的信息,好像很多都不正确了. 小Ho:课程

Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)

Almost Acyclic Graph CodeForces - 915D time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output You are given a directed graph consisting of n vertices and m edges (each edge is directed, so it can

hdu 3342 Legal or Not 拓扑排序判断环。 现在的我,除了刷水题,,还能干什么

Legal or Not Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4960    Accepted Submission(s): 2270 Problem Description ACM-DIY is a large QQ group where many excellent acmers get together. It is

POJ 1094 Sorting It All Out(拓扑排序判环)

题目链接:http://poj.org/problem?id=1094 题目: Description An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D

HDU 4324 Triangle LOVE(拓扑排序判环)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4324 题目: Problem Description Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possi