泛函编程(23)-泛函数据类型-Monad

简单来说:Monad就是泛函编程中最概括通用的数据模型(高阶数据类型)。它不但涵盖了所有基础类型(primitive types)的泛函行为及操作,而且任何高阶类或者自定义类一旦具备Monad特性就可以与任何类型的Monad实例一样在泛函编程中共同提供一套通用的泛函编程方式。所以有人把泛函编程视作Monadic Programming也不为过之。那么,具体什么是Monad呢?

在前面我们讨论过Monoid,我们说过它是一个特殊的范畴(Category),所有数据类型的Monoid实例都共同拥有一套Monoid特有的操作及遵循一套Monoid行为定律。这样我们可以把Monoid视为一个抽象数据模型,在泛函算法中使用特殊的Monoid实例就可以达到预期的效果而不需要修改算法。那么可以说Monad就是一个比Monoid更概括、更抽象、覆盖范畴更广的高阶数据类型了。

实际上在设计泛函库组件(combinator)时,我们会尽量避免重复编码,实现方式就是把通用或共性的操作抽取出来形成一些新的高阶类型(higher types),也就是新的抽象类型(Abstraction)。这样我们可以在不同的组件库中对同类操作共同使用这些通用的类型了。让我们先看看以下的一个抽象过程:

我们在前面讨论过一些数据类型。它们都有一个共同的函数:map

1   def map[A,B](la: List[A])(f: A => B): List[B]
2   def map[A,B](oa: Option[A])(f: A => B): Option[B]
3   def map[A,B](pa: Par[A])(f: A => B): Par[B]
4   def map[A,B](sa: State[S,A])(f: A => B): State[S,B]

这几个函数都具有高度相似的款式(signature),不同的是它们施用的具体数据类型。那么我们应该可以把这个map抽象出来:通过增加一个高阶类型Functor,用它来概括实现map:

1   trait Functor[F[_]] {
2       def map[A,B](a: F[A])(f: A => B): F[B]
3   }

注意在上面的map例子里的施用类型都是高阶类型;List[A]、Option[A]、Par[A] ...都是F[A]这种形式。所以Functor的类参数是F[_],即: Functor[List], Functor[Option], Functor[Par] ...,这里面F[_]就是F[A],A可以是任何类型。我们可以设计一个List的Functor实例:

1   object ListFunctor extends Functor[List] {
2       def map[A,B](la: List[A])(f: A => B): List[B] = la map f
3   }

把F换成List就可以了。其它类型的Functor实例:

1  object OptionFunctor extends Functor[Option] {
2       def map[A,B](oa: Option[A])(f: A => B): Option[B] = oa map f
3   }
4   object StreamFunctor extends Functor[Stream] {
5       def map[A,B](sa: Stream[A])(f: A => B): Stream[B] = sa map f
6   }

我们只需要对不同类型的操作使用对应的Functor实例就可以了:

1 ListFunctor.map(List(1,2,3)){_ + 10}             //> res0: List[Int] = List(11, 12, 13)
2  OptionFunctor.map(Some(1)){_ + 10}               //> res1: Option[Int] = Some(11)

操作模式是一致相同的。不过讲实在话,上面的这些实例都没什么意义,因为施用的具体类型本身就支持map。也就是说List,Option等本身就是Functor。换句话讲就是:它们都可以map,所以都是Functor。看看下面怎么使用Functor吧:

1   trait Functor[F[_]] {
2       def map[A,B](a: F[A])(f: A => B): F[B]
3       def unzip[A,B](fab: F[(A,B)]): (F[A],F[B]) = {
4         (map(fab){a => a._1},map(fab){a => a._2})
5       }
6   }

在这个例子中我特意把整个trait申明放了进去。这里的map还是抽象的,意味着还需要在具体的类型实例里实现。我们在设计unzip时是针对F的。在trait Functor里我们可以肯定F[(A,B)]支持map,所以我们才可以完成unzip函数的实现。这就是抽象的作用。当我们使用unzip时只要确定传入的参数fab是Functor就行了。这样unzip可以支持所有封装(A,B)的Functor:

1 ListFunctor.unzip(List((1,10),(2,20),(3,30)))    //> res0: (List[Int], List[Int]) = (List(1, 2, 3),List(10, 20, 30))
2  OptionFunctor.unzip(Some((1,2)))                 //> res1: (Option[Int], Option[Int]) = (Some(1),Some(2))

讲到这里,这个Functor跟Monad有什么关系吗?不过这种抽象的目的和模式可能跟Monad有什么关联吧?那么再往下推导:在之前的数据类型设计里我们曾想碰到很多map2函数:

1  def map2[A,B,C](la: List[A], lb: List[B])(f: (A,B) => C): List[C] = {
2       la flatMap {a => lb map { b => f(a,b) }}
3   }
4   def map2[A,B,C](oa: Option[A], ob: Option[B])(f: (A,B) => C): Option[C] = {
5       oa flatMap{a => ob map { b => f(a,b) }}
6   }
7   def map2[A,B,C](pa: Par[A], pb: Par[B])(f: (A,B) => C): Par[C] = {
8       pa flatMap{a => pb map { b => f(a,b) }}
9   }

看看这些map2函数:不但款式相同,实现方法也是相同的。不同的还是具体施用受体的数据类型。看来我们还是因为各种数据类型的不同而重复编写了map2组件。我们应该想办法一次实现map2后让所有数据类型实例都可以使用,从而彻底避免重复编码。可以肯定的是这些办法一定跟共性抽象有关。

在前面那些章节的讨论中我们一直针对某些数据类型的特性设计最基本的操作函数或组件。因为各种数据类型的不同我们重复编写了map2组件。现在我们看到map2是可以用flatMap和map来实现的。那么flatMap和map就是最基本最通用的组件了吗?事实上map可以用flatMap和unit来实现:

1   def map[A,B](pa: Par[A])(f: A => B): Par[B] = {
2       flatMap(pa) { a => unit(f(a)) }
3   }

那么我们就先选择unit + flatMap作为最基本组件。当然,从前面的推导中我们可以得出unit + flatMap基本组件比Functor更抽象(更概括),因为map可以用unit + flatMap来实现。我们称这个抽象模型为Monad,它继承了Functor的特性,是Functor,因为Monad可以map。我们可以先用trait来表达Monad:

 1  trait Monad[M[_]] extends Functor[M] {
 2       def unit[A](a: A): M[A]
 3       def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B]
 4       def map[A,B](ma: M[A])(f: A => B): M[B] = {
 5           flatMap(ma){a => unit(f(a))}
 6       }
 7       def map2[A,B,C](ma: M[A], mb: M[B])(f: (A,B) => C): M[C] = {
 8           flatMap(ma) { a => map(mb){ b => f(a,b) }}
 9       }
10   }

在这个trait里unit和flatMap是抽象的。这意味着各类型的Monad实例必须实现unit和flatMap,并且会自动获取map和map2两个组件。

 1  val listMonad = new Monad[List] {
 2      def unit[A](a: A) = List(a)
 3      def flatMap[A,B](la: List[A])(f: A => List[B]): List[B] = {
 4           la flatMap f
 5      }
 6   }                                               //> listMonad  : ch11.monad.Monad[List] = [email protected]
 7                                                   //| 0c12
 8
 9   listMonad.map(List(1,2,3)){_ + 10}              //> res0: List[Int] = List(11, 12, 13)
10   listMonad.map2(List(1,2),List(3,4)){(a,b) => List(a,b)}
11                                                   //> res1: List[List[Int]] = List(List(1, 3), List(1, 4), List(2, 3), List(2, 4))
12                                                   //| 

的确我们从listMonad中自动获得了可用的map和map2.

optionMonad是这样的:

1  val optionMonad = new Monad[Option] {
2       def unit[A](a: A) = Some(a)
3       def flatMap[A,B](oa: Option[A])(f: A => Option[B]): Option[B] = {
4           oa flatMap f
5       }
6   }                                               //> optionMonad  : ch11.monad.Monad[Option]{def unit[A](a: A): Some[A]} = ch11.m
7                                                   //| [email protected]
8   optionMonad.map(Some(1)){a => a + 10}           //> res2: Option[Int] = Some(11)
9   optionMonad.map2(Some(1),Some(2)){_ + _}        //> res3: Option[Int] = Some(3)

现在我们似乎可以说任何可以flatMap(具备flatMap函数)的数据类型都是Monad。

我们可以再丰富一下现在的Monad组件库,增加多些共用组件,使Monad抽象模型能更概括实用些:

 1   trait Monad[M[_]] extends Functor[M] {
 2       def unit[A](a: A): M[A]
 3       def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B]
 4       def map[A,B](ma: M[A])(f: A => B): M[B] = {
 5           flatMap(ma){a => unit(f(a))}
 6       }
 7       def map2[A,B,C](ma: M[A], mb: M[B])(f: (A,B) => C): M[C] = {
 8           flatMap(ma) { a => map(mb){ b => f(a,b) }}
 9       }
10       def sequence[A](lm: List[M[A]]): M[List[A]] = {
11           lm.foldRight(unit(Nil: List[A])){(a,b) => map2(a,b){_ :: _} }
12       }
13       def travers[A,B](la: List[A])(f: A => M[B]): M[List[B]] = {
14           la.foldRight(unit(Nil: List[B])){(a,b) => map2(f(a),b){_ :: _}}
15       }
16       def replicateM[A](n: Int, ma: M[A]): M[List[A]] = {
17           if (n == 0) unit(Nil)
18           else map2(ma,replicateM(n-1,ma)) {_ :: _}
19       }
20       def factor[A,B](ma: M[A], mb: M[B]): M[(A,B)] = {
21           map2(ma,mb){(a,b) => (a,b)}
22       }
23       def cofactor[A,B](e: Either[M[A],M[B]]): M[Either[A,B]] = {
24           e match {
25               case Right(b) => map(b){x => Right(x)}
26               case Left(a) => map(a){x => Left(x)}
27           }
28       }
29   }

可以看出,我们新增加的组件都是以unit + flatMap这两个基础组件实现的,都是更高阶的组件。所以是不是可以说Monadic programming 就是 flatMap Programming呢?

时间: 2024-12-20 01:06:01

泛函编程(23)-泛函数据类型-Monad的相关文章

泛函编程(5)-数据结构(Functional Data Structures)

编程即是编制对数据进行运算的过程.特殊的运算必须用特定的数据结构来支持有效运算.如果没有数据结构的支持,我们就只能为每条数据申明一个内存地址了,然后使用这些地址来操作这些数据,也就是我们熟悉的申明变量再对变量进行读写这个过程了.试想想如果没有数据结构,那我们要申明多少个变量呢.所以说,数据结构是任何编程不可缺少的元素. 泛函编程使用泛函数据结构(Functional Data Structure)来支持泛函程序.泛函数据结构的特点是”不可变特性“(Immutability), 是泛函编程中函数组

泛函编程(24)-泛函数据类型-Monad, monadic programming

在上一节我们介绍了Monad.我们知道Monad是一个高度概括的抽象模型.好像创造Monad的目的是为了抽取各种数据类型的共性组件函数汇集成一套组件库从而避免重复编码.这些能对什么是Monad提供一个明确的答案吗?我们先从上节设计的Monad组件库中的一些基本函数来加深一点对Monad的了解: 1 trait Monad[M[_]] extends Functor[M] { 2 def unit[A](a: A): M[A] 3 def flatMap[A,B](ma: M[A])(f: A =

泛函编程(25)-泛函数据类型-Monad-Applicative

上两期我们讨论了Monad.我们说Monad是个最有概括性(抽象性)的泛函数据类型,它可以覆盖绝大多数数据类型.任何数据类型只要能实现flatMap+unit这组Monad最基本组件函数就可以变成Monad实例,就可以使用Monad组件库像for-comprehension这样特殊的.Monad具备的泛函式数据结构内部的按序计算运行流程.针对不同的数据类型,flatMap+unit组件实现方式会有所不同,这是因为flatMap+unit代表着承载数据类型特别的计算行为.之前我们尝试了List,O

泛函编程(32)-泛函IO:IO Monad

由于泛函编程非常重视函数组合(function composition),任何带有副作用(side effect)的函数都无法实现函数组合,所以必须把包含外界影响(effectful)副作用不纯代码(impure code)函数中的纯代码部分(pure code)抽离出来形成独立的另一个纯函数.我们通过代码抽离把不纯代码逐步抽离向外推并在程序里形成一个纯代码核心(pure core).这样我们就可以顺利地在这个纯代码核心中实现函数组合.IO Monad就是泛函编程处理副作用代码的一种手段.我们先

泛函编程(27)-泛函编程模式-Monad Transformer

经过了一段时间的学习,我们了解了一系列泛函数据类型.我们知道,在所有编程语言中,数据类型是支持软件编程的基础.同样,泛函数据类型Foldable,Monoid,Functor,Applicative,Traversable,Monad也是我们将来进入实际泛函编程的必需.在前面对这些数据类型的探讨中我们发现: 1.Monoid的主要用途是在进行折叠(Foldable)算法时对可折叠结构内元素进行函数施用(function application). 2.Functor可以对任何高阶数据类型F[_]

泛函编程(34)-泛函变量:处理状态转变-ST Monad

泛函编程的核心模式就是函数组合(compositionality).实现函数组合的必要条件之一就是参与组合的各方程序都必须是纯代码的(pure code).所谓纯代码就是程序中的所有表达式都必须是Referentially Transparent(RT,等量可替换的),它的意思是:在一段程序p中,所有的表达式e都可以用e的运算结果替代而不影响到p的运算结果,那么e就是RT等量可替换的,也就是说程序p是由纯代码组成的.但如果程序p中包含了一些变量,这些变量的状态就会影响到程序中e的运算结果,那么p

泛函编程(21)-泛函数据类型-Monoid

Monoid是数学范畴理论(category theory)中的一个特殊范畴(category).不过我并没有打算花时间从范畴理论的角度去介绍Monoid,而是希望从一个程序员的角度去分析Monoid以及它在泛函编程里的作用.从这个思路出发我们很自然得出Monoid就是一种数据类型,或者是一种在泛函编程过程中经常会遇到的数据类型:当我们针对List或者loop进行一个数值的积累操作时我们就会使用到Monoid.实际上Monoid就是List[A] => A的抽象模型.好了,我们就不要越描越黑了吧

泛函编程(30)-泛函IO:Free Monad-Monad生产线

在上节我们介绍了Trampoline.它主要是为了解决堆栈溢出(StackOverflow)错误而设计的.Trampoline类型是一种数据结构,它的设计思路是以heap换stack:对应传统递归算法运行时在堆栈上寄存程序状态,用Trampoline进行递归算法时程序状态是保存在Trampoline的数据结构里的.数据结构是在heap上的,所以可以实现以heap换stack的效果.这种以数据结构代替函数调用来解决问题的方式又为泛函编程提供了更广阔的发展空间. 我们知道,任何涉及IO的运算都会面临

泛函编程(17)-泛函状态-State In Action

对OOP编程人员来说,泛函状态State是一种全新的数据类型.我们在上节做了些介绍,在这节我们讨论一下State类型的应用:用一个具体的例子来示范如何使用State类型.以下是这个例子的具体描述: 模拟一个自动糖果贩售机逻辑:贩售机有两种操作方法:投入硬币和扭动出糖旋钮.贩售机可以处于锁定和放开两种状态.模拟运作跟踪贩售机内当前的糖果和硬币数量.贩售机的操作逻辑要求如下: 1.如果机内有糖的话,投入硬币贩售机从锁定状态进入放开状态 2.在放开状态下扭动旋钮贩售机放出一块糖果后自动进入锁定状态 3