【bzoj2783】【JLOI2012】【树】【set】

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

Input

第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

Output

输出路径节点总和为S的路径数量。

Sample Input

3 3

1 2 3

1 2

1 3

Sample Output

2

HINT

对于100%数据,N≤100000,所有权值以及S都不超过1000。

题解:处理一下每个点到根的路径权值和,动态的维护一个set,每dfs到一个点询问一下set里有没有当前点到根的路径权值和-s的点。有的话答案+1即可。

#include<iostream>
#include<cstdio>
#include<set>
#define N 100010
using namespace std;
set<int>s;
int n,m,point[N],next[N*2],k,a[N],u,v,cnt,ans,deep[N];
struct use{
	int st,en;
}e[2*N];
void add(int x,int y)
{
	next[++cnt]=point[x];point[x]=cnt;
	e[cnt].st=x;e[cnt].en=y;
}
void dfs(int x,int fa)
{
	for (int i=point[x];i;i=next[i])
	 	if (e[i].en!=fa)
	 	{
		 deep[e[i].en]=deep[x]+a[e[i].en];
		 s.insert(deep[e[i].en]);
	 	 if (s.find(deep[e[i].en]-k)!=s.end()) ans++;
	 	 dfs(e[i].en,x);
	     s.erase(deep[e[i].en]);
	    }
}
int main()
{
	scanf("%d%d",&n,&k);
	for (int i=1;i<=n;i++) scanf("%d",&a[i]);
	for (int i=1;i<=n-1;i++)
	 {
	   scanf("%d%d",&u,&v);
	   add(u,v);add(v,u);
	 }
	s.insert(0);deep[1]=a[1];s.insert(deep[1]);dfs(1,0);
	cout<<ans<<endl;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-06 11:41:45

【bzoj2783】【JLOI2012】【树】【set】的相关文章

[bzoj2783][JLOI2012]树_树的遍历

树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 10^5$,$1\le S,val_i\le 10^3$. 想法:翻lijinnn的blog翻到的水题. 我们直接遍历整棵树,遍历的时候维护全局桶.然后在回溯的时候将这个点对应的dis删除.这样遍历到每个点时桶内对应的就是这个点到根节点的dis桶,直接统计答案即可. 最后,附上丑陋的代码... ...

bzoj2783: [JLOI2012]树

2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 447[Submit][Status][Discuss] Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这个数列必须包含至少两个正整数.你需要求出这个数列的最小长度.如果这个数列不存在则输出-

BZOJ2783: [JLOI2012]树 dfs+set

2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 588  Solved: 347 Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这个数列必须包含至少两个正整数.你需要求出这个数列的最小长度.如果这个数列不存在则输出-1. 输入格式: 每行包含一个正整数n. 每个文件

【dfs】【哈希表】bzoj2783 [JLOI2012]树

因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u]-S是否存在. 数据结构用set.hashtable(随便卡)(需要支持删除,由于总是删掉最后一个,因此可以实现)都行. #include<cstdio> #include<cstring> using namespace std; #define MAXN 100001 #defin

【BZOJ2783】[JLOI2012]树 DFS+栈+队列

[BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. Input 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. Output 输出路径节点总和为S的路径数量. Sa

洛谷 P3252 [JLOI2012]树

P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. 输入输出格式 输入格式: 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. 输出格式: 输出路径节点总和为S的路径数量. 输入输出样例

2783: [JLOI2012]树( dfs + BST )

直接DFS, 然后用set维护一下就好了.... O(nlogn) -------------------------------------------------------------------------------- #include<bits/stdc++.h> #define rep(i, n) for(int i = 0; i < n; ++i) #define clr(x, c) memset(x, c, sizeof(x)) #define foreach(i, x

题解 P3252 【[JLOI2012]树】

\(\Huge{[JLOI2012]树}\) 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. 输入输出格式 输入格式: 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. 输出格式: 输出路径节点总和为S的路径数量. 输入

【JLOI2012】【BZOJ2783】树

Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. Input 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. Output 输出路径节点总和为S的路径数量. Sample Input 3 3 1 2 3 1

洛谷P3252 [JLOI2012]树

题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. 输入输出格式 输入格式: 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. 输出格式: 输出路径节点总和为S的路径数量. 输入输出样例 输入样例#1: 3 3 1 2 3