R语言之回归分析

数据指标建模指的是,使用若干自变量并建立公式,以预测目标变量。如果研究的目标变量是连续型的,则称其为回归分析。

一、一元线性回归分析

data.lm<- lm(height~weight,women)  计算模型
summary(data.lm)   列出模型详细信息

Call:
lm(formula = height ~ weight, data = women)

Residuals:
     Min       1Q   Median       3Q      Max
-0.83233 -0.26249  0.08314  0.34353  0.49790 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.723456   1.043746   24.64 2.68e-12 ***
weight       0.287249   0.007588   37.85 1.09e-14 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.44 on 13 degrees of freedom
Multiple R-squared:  0.991,     Adjusted R-squared:  0.9903
F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14

其他信息:
(1)相关系数r、r^2
Multiple R-squared
获取:summary(data.lm)$r.squared

(2)修正相关系数r^2,消除自变量数的影响
Adjusted R-squared
获取:summary(data.lm)$adj.r.squared

(3)回归系数的显著性检验
T检验:检验各个模型参数是否等于0,并计算其等于0时的概率
时间: 2024-09-04 17:06:58

R语言之回归分析的相关文章

R语言 逐步回归分析

逐步回归分析是以AIC信息统计量为准则,通过选择最小的AIC信息统计量,来达到删除或增加变量的目的. R语言中用于逐步回归分析的函数 step()    drop1()     add1() #1.载入数据 首先对数据进行多元线性回归分析 tdata<-data.frame( x1=c( 7, 1,11,11, 7,11, 3, 1, 2,21, 1,11,10), x2=c(26,29,56,31,52,55,71,31,54,47,40,66,68), x3=c( 6,15, 8, 8, 6

R语言之Logic回归分析

理论上,回归分析是在目标变量为连续型数据的情况下建模的,它不能处理目标变量为分类型数据的情况. 而logic回归分析的思路是把分类变量(“是否开通VIP”)转化为连续变量(“开通VIP的概率”),进而使用回归分析的方法间接地研究分类分析的问题. 一.原理 假设vip变量为分类变量,其取值只有0和1,这是分类型变量,无法通过回归分析建模. 但是,vip取值为1的概率却是一个连续型变量(prob.vip),可以使用回归分析为prob.vip建模: prob.vip=k1*x1+k2*x2+k3*x3

R语言 多元线性回归分析

#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公式#plot(a)绘制模型诊断图#predict(a)用作预测#print(a)显示#residuals()计算残差#setp()逐步回归分析#summary()提取模型资料 #多元线性回归分析 #回归系数的估计 #显著性检验: 1回归系数的显著性检验 t检验 就是检验某个变量系数是否为0 2回归方程的显

R语言-回归分析笔记

使用若干自变量并建立公式,以预测目标变量 目标变量是连续型的,则称其为回归分析 (1)一元线性回归分析 y=kx+b sol.lm<-lm(y~x,data) abline(sol.lm) 使模型误差的平方和最小,求参数k和b,称为最小二乘法 k=cov(x,y)/cov(x,x) b=mean(y)-k*mean(x) 估计参数b,k的取值范围 p元模型 p是自变量数,n是样本数 [ki-sd(ki)ta/2(n-p-1),ki+sd(ki)ta/2(n-p-1)] k0表示回归模型的b;  

R语言学习资源

入门视频教程 R语言初级课程(1)- R语言快速入门http://cos.name/videos/intro-2-r/ 代码 #对象 1+1*3 c(1,2,3,4,5) c('helloworld','i am a R user') c("hehe","haha") 1:6 6:1 exp(1:4) log(1:3) a<-c(1,2,3,4,5) a[1] a[1:3] a[-4] a>3 a[a>3] #数组,类型需要一致 x<-1:1

R语言实战(五)方差分析与功效分析

本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析

R语言简单入门

运行R语言可以做哪些事? 1.探索性数据分析(将数据绘制图表) 2.统计推断(根据数据进行预测) 3.回归分析(对数据进行拟合分析) 4.机器学习(对数据集进行训练和预测) 5.数据产品开发 R语言包的使用 1.安装包 install.packages()//安装https://cran.r-project.org/ install_github()//从github安装 2.使用包 加载包library(caret)//括号为包的名字 data()//R自带的数据集(针对导入的包) ?func

R语言实战(八)广义线性模型

本文对应<R语言实战>第13章:广义线性模型 广义线性模型扩展了线性模型的框架,包含了非正态因变量的分析. 两种流行模型:Logistic回归(因变量为类别型)和泊松回归(因变量为计数型) glm()函数的参数 分布族 默认的连接函数 binomial (link = "logit") gaussian (link = "identity") gamma (link = "inverse") inverse.gaussian (lin

主成分分析(PCA)原理及R语言实现

原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)——基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 主成分分析(PCA)原理详解(推荐) 多变