Cracking Story - How I Cracked Over 122 Million SHA1 and MD5 Hashed Passwords

This is the story about how I cracked 122 million* password hashes with John the Ripper and oclHashcat-plus.

Author: m3g9tr0n, Copy Editor: Thireus.

It was several months ago, when I (m3g9tr0n) saw a tweet from KoreLogic about atorrent file containing various hash lists of passwords for a total of 146 million passwords. This very big amount of password hashes at first discouraged me, as I only own a classic computer configuration with an AMD Phenom II 4 cores at 3,2 Mhz in addition to an ATI/AMD 5770 graphics card. But I really wanted to give it a try because the field of password cracking fascinates me.

The password cracking tools I used during this long trip were John the Ripperand oclHashcat-plus. This article is about cracking the provided MD5 hashes of KoreLogic only, but the same strategy was also applied to the SHA1 hashes.

Updates:

  • 08/29/2012 – New example in the John the Ripper section: "Crack double MD5 hashes with the help of dict2hash.pl script"
  • 08/29/2012 – New download! All in one sorted and cleaned version.

Dealing with hashes...

First of all the KoreLogic torrent file file must be decompressed, it contains a folder named "hashes". Let‘s check the content of this folder...

[email protected]:~/hashes$ ls
longer_salts  raw-md5.hashes.txt  salted_with_md5  SHA1  vBulletin-v3.8.4

We will concentrate from now on the raw-md5.hashes.txt list. This file is 4.3 GB and includes 139444502 lines according to the wc utility.

[email protected]:~/hashes$ wc -l raw-md5.hashes.txt
139444502 raw-md5.hashes.txt

As you can assume, both John the Ripper and oclHashcat-plus are not able to load this file because it is too big. For that reason, we need to split this file. Under Linux we have a nice utility called split that does this job very well:

[email protected]:~$ split --help
Usage: split [OPTION]... [INPUT [PREFIX]]
Output fixed-size pieces of INPUT to PREFIXaa, PREFIXab, ...; default
size is 1000 lines, and default PREFIX is `x‘.  With no INPUT, or when INPUT
is -, read standard input.

Mandatory arguments to long options are mandatory for short options too.
  -a, --suffix-length=N   use suffixes of length N (default 2)
  -b, --bytes=SIZE        put SIZE bytes per output file
  -C, --line-bytes=SIZE   put at most SIZE bytes of lines per output file
  -d, --numeric-suffixes  use numeric suffixes instead of alphabetic
  -l, --lines=NUMBER      put NUMBER lines per output file
      --verbose           print a diagnostic just before each
                            output file is opened
      --help     display this help and exit
      --version  output version information and exit

SIZE may be (or may be an integer optionally followed by) one of following:
KB 1000, K 1024, MB 1000*1000, M 1024*1024, and so on for G, T, P, E, Z, Y.

We can use the --lines=NUMBER parameter to split our raw-md5.hashes.txt file.

[email protected]:~/hashes$ split -l 3000000 raw-md5.hashes.txt part

Note that we can also split the file based on the amount of MBs by taking into consideration that each MD5 hash is 32 bytes long.

Cracking Passwords with oclHashcat-plus

I started playing with oclHashcat-plus because it contains the -removeoption, which removes the hashes from the hashfile once it is cracked and it is really convenient. The only limitation oclHashcat-plus has, is the constraint on password length. In other words, it is only able to crack passwords up to 15 characters. The rules that I used for oclHashcat-plus are base64.rule,passwordspro.ruleT0XlC.rule and in some cases d3ad0ne.rule. There rules can be found directly from the oclHashcat-plus suite.

Bruteforce techniques were not my first choice. I used wordlists which I downloaded from the g0tm1lk‘s blogspot. You will find on g0tmi1k‘s article other external links for more wordlists. The biggest part of cracking process was done by using these wordlists with the rules mentioned above. Let‘s see some examples...

Using a single rule:

./oclHashcat-plus64.bin -m 0 ~/hashes/md5_1 ~/Wordlists/d3ad0ne.dic -r rules/best64.rule -o Ultimate_Crack/eNtr0pY_1 --remove

Using Rules‘ combination:

./oclHashcat-plus64.bin -m 0 ~/hashes/md5_1 ~/Wordlists/d3ad0ne.dic -r rules/best64.rule r rules/passwordspro.rule -o Ultimate_Crack/eNtr0pY_1 --remove

Bruteforce attack with mask (you can specify whichever charset you want):

./oclHashcat-plus64.bin -a 3 -1 ?l?d?u?s -m 0 ~/hashes/md5_1 ?1?1?1?1?1?1?1?1 -o Ultimate_Crack/eNtr0pY_1 --remove

Combination attack:

./oclHashcat-plus64.bin -a 1 -m 0 ~/hashes/md5_1 ~/Wordlists/d3ad0ne.dic ~/Wordlists/list -o Ultimate_Crack/eNtr0pY_1 --remove

Combination attack with rules:

./oclHashcat-plus64.bin -a 1 -m 0 ~/hashes/md5_1 ~/Wordlists/d3ad0ne.dic ~/Wordlists/list -r rules/passwordspro.rule -o Ultimate_Crack/eNtr0pY_1 --remove

Permutation attack:

./oclHashcat-plus64.bin -a 4 -m 0 ~/hashes/md5_1 ~/Wordlists/d3ad0ne.dic -o Ultimate_Crack/eNtr0pY_1 --remove

Permutation attack with rules:

./oclHashcat-plus64.bin -a 4 -m 0 ~/hashes/md5_1 ~/Wordlists/d3ad0ne.dic -r rules/best64.rule -o Ultimate_Crack/eNtr0pY_1 --remove

In some cases, I used the hybrid + mask attack technique:

./oclHashcat-plus64.bin -a 6 -1 ?l?d -m 0 ~/hashes/md5_1 ~/Wordlists/d3ad0ne.dic ?1?1 -o Ultimate_Crack/eNtr0pY_1 --remove

Hybrid + mask attack with rules:

./oclHashcat-plus64.bin -a 6 -1 ?l?d -m 0 ~/hashes/md5_1 ~/Wordlists/d3ad0ne.dic ?1?1 -r rules/best64.rule -o Ultimate_Crack/eNtr0pY_1 --remove

At this point, I did not use these last two methods as they were very time consuming. I rather found a better one using KoreLogic‘s Rules for John the Ripper by piping the output of John the Ripper to oclHashcat-plus. As I mentioned, oclHashcat-plus is able to crack passwords up to 15 characters. For that reason, I had to define every time, via the --stdout option, the length of the produced word. If you own a very fast GPU you can skip the following example.

./john --wordlist=~/Wordlists/all.lst -rules:KoreLogicRulesPrependYears --stdout=10 | ./oclHashcat-plus64.bin -m 0 ~/hashes/md5_1 -o Ultimate_Crack/eNtr0pY_1 --remove

Of course you can use other prepend rules created from Korelogic, like KoreLogicRulesPrependNumNum, or even better create your own rules!

It was time to produce a wordlist from the cracked passwords and use it to crack the remaining hashes. From eNtr0pY_1, I removed the MD5 hashes with the following command.

cut -b34- eNtr0pY_1 > eNtr0pY_1.dic

By using the above produced wordlist, a big amount of MD5 hashes were cracked using the fingerprint attack. You can read more about this attack from Martin Bos @purehate and I guarantee you that this technique is very successful!

Of course you can also use the binaries included into hashcat-utils and pipe the output of each util to oclHashcat-plus.

[email protected]:~/oclHashcat-plus-0.08/hashcat-utils$ ls
combinator.bin  expander.bin  gate.bin  len.bin  mp32.bin  permute.bin  prepare.bin  req.bin  splitlen.bin

Cracking Passwords with John the Ripper

After testing all my wordlist collection and after several days, it was time to move to John the Ripper for cracking the rest of password hashes...

I used magnum-ripper compiled with OpenCL for ATI/AMD graphics card because I wanted to use the --format=raw-md5-opencl parameter. Compared to --format=raw-md5, it is way faster as it uses your CPU and GPU!

The Rules that were used with John the Ripper are:

  • wordlist
  • Single
  • NT
  • Extra
  • KoreLogicRulesAppendNumbersandSpecials_Simple
  • KoreLogicRulesAppend6Num
  • KoreLogicRulesPrependAndAppendSpecial
  • KoreLogicRulesAppendNumNum_AddSpecialEverywhere
  • KoreLogicRulesAppendNumNumNum_AddSpecialEverywhere
  • KoreLogicRulesL33t.

You can download these rules and add them to your john.conf file:

Let’s see now some examples with John the Ripper...

Using --rules=Single:

./john --format=raw-md5-opencl --wordlist=../../Wordlists/all.lst --rules:Single ~/hashes/md5_1

The results of cracked hashes are stored in the john.pot file by default. You can examine its contents with catmorehead and tail.

[email protected]:~/Tools/Password_Cracking/magnum-jumbo-OpenCL/run$ tail -n 9 john.pot
$MD5$0fad81e7a61b47d387dde893fcf8e88a:anacarolinagu
$MD5$0f82fc9a81f5db07eb9289767390fd2b:fabulousfoodsu
$MD5$0e22933267b2e7df062703c4e5842029:fabuloustravelu
$MD5$0d40086a54fefe993c9816d1441672ac:modularhomeu
$MD5$0ed8181fc4d18e260dd8e36633124bfd:greenshoppingu
$MD5$0d6e8da4017ec5c384ac5536087da44d:lawofattractionu
$MD5$0eb916d3c6a66a32cedd4acc6edb1dbb:hotreportu
$MD5$0e241f99b5c13d56686ec618ab54d5fa:flightsandholidaysu
$MD5$0f3c99478362aae389d2cbf716394269:stthomasmoresu

To generate a wordlist from the john.pot file, you can use the following command.

cut -d: -f 2- john.pot | sort -u > cracked.dic

The generated wordlist can be used to crack more hashes when combined with the abovementioned rules.

When I was cracking MD5 hashes with oclHashcat-plus, I observed that some produced passwords were rejected. This is because oclHashcat-plus has a limitation about characters‘ length. For that reason, I piped hashcat‘s output to John the Ripper with the additional advantage of using hashcat rules with John the Ripper.

./hashcat-cli64.bin --stdout ~/Wordlists/d3ad0ne.dic -r rules/best64.rule | ./john --format=raw-md5-opencl --stdin ~/hashes/md5_1

After trying all the wordlists combined with the rules mentioned above, it was time to move to bruteforce attacks with John the Ripper. Unfortunately, John the Ripper does not use the mask attacks to produce passwords when implementing bruteforce attacks. We have to create our own charset based on cracked passwords contained in john.pot.

./john --make-charset=eNtr0pY.chr
Loaded 7948325 plaintexts
Generating charsets... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 DONE
Generating cracking order... DONE
Successfully written charset file: eNtr0pY.chr (95 characters)

Many of you will wonder about "31 DONE"... This is just because I compiled John the Ripper with 31 characters length. By default, John the Ripper is compiled with support for up to 8 characters length, so it is best to change it by modifying the following lines of the header file params.h located in the scrfolder of John the Ripper.

#define CHARSET_MIN                     ‘ ‘
#define CHARSET_MAX                     0x7E
#define CHARSET_SIZE                    (CHARSET_MAX - CHARSET_MIN + 1)
#define CHARSET_LENGTH                  8 //Change that to 31 or whatever you wish

At last you have to include your created charset to john.conf as provided in this example:

# Incremental modes
[Incremental:eNtr0pY]
File = $JOHN/eNtr0pY.chr
MinLen = 0
MaxLen = 31
CharCount = 95

Now it is time to use bruteforce attacks with our own charstet!

./john --format=raw-md5-opencl --incremental=eNtr0pY ~/hashes/md5_1

If you look into john.conf you will see some bruteforce attack modes categorized as externals. These are Double, Strip, Keyboard (which uses neighbor combinations produced from keyboard characters), KnownForce, DateTime, Repeats, Sequence, Subsets and DumbForce for crazy password formats.

./john --format=raw-md5-opencl --external=DumbForce ~/hashes/md5_1

We would also like to crack double MD5 hashes with the help of thedict2hash.pl script provided here.

perl dict2hash.pl < rockyou.txt | ./john --format=raw-md5-opencl --stdin ~/md5_1

Here you can see some samples of cracked MD5s with John the Ripper:

Personally, I believe a password like "$MD5$0b26a0faf1344d6e772bf55628e10e29:n34=mn { .clipboard $me }" is impossible to crack with bruteforce attacks.

Note: All the abovementioned techniques can be used with oclHashcat-plus by defining -m 100 and with John the Ripper by defining --format=raw-sha1-opencl for SHA1 cracking with OpenCL!

Password Analysis

Finally, it worths to see an analysis using pipal (a password analyser) of a collected sample generated from cracking results.

[email protected]:~/pipal$ ruby1.9.1 pipal.rb -o eNtr0pY_1 ~/Wordlists/Ultimate/Part1/eNtr0pY_5.dic
Total entries = 759103
Total unique entries = 758299
 
Top 10 passwords
niezgadniesz123 = 3 (0.0%)
ubqu = 3 (0.0%)
amonys = 3 (0.0%)
centralitie = 3 (0.0%)
bobydu = 3 (0.0%)
hanghuynh = 3 (0.0%)
hmadyousi = 3 (0.0%)
matthewperman = 3 (0.0%)
shadowninja2 = 3 (0.0%)
lhz4 = 3 (0.0%)
 
Top 10 base words
august = 219 (0.03%)
july = 205 (0.03%)
april = 199 (0.03%)
june = 195 (0.03%)
march = 165 (0.02%)
alex = 161 (0.02%)
love = 132 (0.02%)
chris = 130 (0.02%)
daniel = 128 (0.02%)
dragon = 122 (0.02%)
 
Password length (length ordered)
1 = 13 (0.0%)
2 = 103 (0.01%)
3 = 1332 (0.18%)
4 = 16781 (2.21%)
5 = 19831 (2.61%)
6 = 95800 (12.62%)
7 = 202414 (26.66%)
8 = 158562 (20.89%)
9 = 103855 (13.68%)
10 = 75652 (9.97%)
11 = 46023 (6.06%)
12 = 24997 (3.29%)
13 = 8423 (1.11%)
14 = 3772 (0.5%)
15 = 1560 (0.21%)
 
Password length (count ordered)
7 = 202414 (26.66%)
8 = 158562 (20.89%)
9 = 103855 (13.68%)
6 = 95800 (12.62%)
10 = 75652 (9.97%)
11 = 46023 (6.06%)
12 = 24997 (3.29%)
5 = 19831 (2.61%)
4 = 16781 (2.21%)
13 = 8423 (1.11%)
14 = 3772 (0.5%)
15 = 1560 (0.21%)
3 = 1332 (0.18%)
2 = 103 (0.01%)
1 = 13 (0.0%)
 
       |                                                               
       |                                                               
       |                                                               
       ||                                                              
       ||                                                              
       ||                                                              
       ||                                                              
       |||                                                             
      ||||                                                             
      ||||                                                             
      |||||                                                            
      |||||                                                            
      ||||||                                                           
      ||||||                                                           
    |||||||||                                                          
|||||||||||||||||                                                      
00000000001111111
01234567890123456
 
One to six characters = 133854 (17.63%)
One to eight characters = 494828 (65.19%)
More than eight characters = 264275 (34.81%)
 
Only lowercase alpha = 154996 (20.42%)
Only uppercase alpha = 14072 (1.85%)
Only alpha = 169068 (22.27%)
Only numeric = 119581 (15.75%)
 
First capital last symbol = 6088 (0.8%)
First capital last number = 73611 (9.7%)
 
Months
january = 109 (0.01%)
february = 45 (0.01%)
march = 247 (0.03%)
april = 251 (0.03%)
may = 850 (0.11%)
june = 246 (0.03%)
july = 223 (0.03%)
august = 300 (0.04%)
september = 80 (0.01%)
october = 134 (0.02%)
november = 113 (0.01%)
december = 115 (0.02%)
 
Days
monday = 59 (0.01%)
tuesday = 20 (0.0%)
wednesday = 7 (0.0%)
thursday = 38 (0.01%)
friday = 46 (0.01%)
saturday = 7 (0.0%)
sunday = 70 (0.01%)
 
Months (Abreviated)
jan = 1482 (0.2%)
feb = 249 (0.03%)
mar = 8397 (1.11%)
apr = 692 (0.09%)
may = 850 (0.11%)
jun = 889 (0.12%)
jul = 1051 (0.14%)
aug = 785 (0.1%)
sept = 215 (0.03%)
oct = 512 (0.07%)
nov = 821 (0.11%)
dec = 874 (0.12%)
 
Days (Abreviated)
mon = 4319 (0.57%)
tues = 28 (0.0%)
wed = 217 (0.03%)
thurs = 44 (0.01%)
fri = 758 (0.1%)
sat = 769 (0.1%)
sun = 1018 (0.13%)
 
Includes years
1975 = 411 (0.05%)
1976 = 388 (0.05%)
1977 = 446 (0.06%)
1978 = 432 (0.06%)
1979 = 441 (0.06%)
1980 = 541 (0.07%)
1981 = 453 (0.06%)
1982 = 519 (0.07%)
1983 = 533 (0.07%)
1984 = 603 (0.08%)
1985 = 585 (0.08%)
1986 = 616 (0.08%)
1987 = 710 (0.09%)
1988 = 641 (0.08%)
1989 = 941 (0.12%)
1990 = 931 (0.12%)
1991 = 995 (0.13%)
1992 = 935 (0.12%)
1993 = 905 (0.12%)
1994 = 907 (0.12%)
1995 = 4021 (0.53%)
1996 = 858 (0.11%)
1997 = 486 (0.06%)
1998 = 443 (0.06%)
1999 = 416 (0.05%)
2000 = 1024 (0.13%)
2001 = 643 (0.08%)
2002 = 586 (0.08%)
2003 = 1132 (0.15%)
2004 = 1254 (0.17%)
2005 = 796 (0.1%)
2006 = 818 (0.11%)
2007 = 1442 (0.19%)
2008 = 1019 (0.13%)
2009 = 742 (0.1%)
2010 = 767 (0.1%)
2011 = 516 (0.07%)
2012 = 925 (0.12%)
2013 = 165 (0.02%)
2014 = 142 (0.02%)
2015 = 146 (0.02%)
2016 = 118 (0.02%)
2017 = 139 (0.02%)
2018 = 131 (0.02%)
2019 = 172 (0.02%)
2020 = 179 (0.02%)

Years (Top 10)
1995 = 4021 (0.53%)
2007 = 1442 (0.19%)
2004 = 1254 (0.17%)
2003 = 1132 (0.15%)
2000 = 1024 (0.13%)
2008 = 1019 (0.13%)
1991 = 995 (0.13%)
1989 = 941 (0.12%)
1992 = 935 (0.12%)
1990 = 931 (0.12%)
 
Colours
black = 485 (0.06%)
blue = 549 (0.07%)
brown = 184 (0.02%)
gray = 89 (0.01%)
green = 348 (0.05%)
orange = 125 (0.02%)
pink = 262 (0.03%)
purple = 73 (0.01%)
red = 2974 (0.39%)
white = 179 (0.02%)
yellow = 85 (0.01%)
violet = 63 (0.01%)
indigo = 22 (0.0%)
 
Single digit on the end = 92080 (12.13%)
Two digits on the end = 87587 (11.54%)
Three digits on the end = 103715 (13.66%)
 
Last number
0 = 45407 (5.98%)
1 = 64764 (8.53%)
2 = 52570 (6.93%)
3 = 52890 (6.97%)
4 = 43719 (5.76%)
5 = 55185 (7.27%)
6 = 42826 (5.64%)
7 = 46169 (6.08%)
8 = 42475 (5.6%)
9 = 44930 (5.92%)
 
 |                                                                     
 |                                                                     
 | | |                                                                 
 ||| |                                                                 
|||| | | |                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
||||||||||                                                             
0123456789
 
Last digit
1 = 64764 (8.53%)
5 = 55185 (7.27%)
3 = 52890 (6.97%)
2 = 52570 (6.93%)
7 = 46169 (6.08%)
0 = 45407 (5.98%)
9 = 44930 (5.92%)
4 = 43719 (5.76%)
6 = 42826 (5.64%)
8 = 42475 (5.6%)
 
Last 2 digits (Top 10)
95 = 14675 (1.93%)
23 = 12192 (1.61%)
12 = 9230 (1.22%)
11 = 8214 (1.08%)
01 = 7606 (1.0%)
00 = 7131 (0.94%)
07 = 6295 (0.83%)
10 = 6182 (0.81%)
21 = 5881 (0.77%)
99 = 5868 (0.77%)
 
Last 3 digits (Top 10)
123 = 6857 (0.9%)
995 = 4122 (0.54%)
971 = 2916 (0.38%)
972 = 2850 (0.38%)
007 = 2514 (0.33%)
000 = 1868 (0.25%)
234 = 1725 (0.23%)
666 = 1465 (0.19%)
777 = 1389 (0.18%)
004 = 1347 (0.18%)
 
Last 4 digits (Top 10)
1995 = 3886 (0.51%)
1234 = 1379 (0.18%)
2007 = 1325 (0.17%)
2004 = 1121 (0.15%)
2003 = 1016 (0.13%)
2008 = 869 (0.11%)
2000 = 846 (0.11%)
1991 = 819 (0.11%)
2012 = 809 (0.11%)
1990 = 789 (0.1%)
 
Last 5 digits (Top 10)
12345 = 743 (0.1%)
23456 = 652 (0.09%)
54321 = 189 (0.02%)
23123 = 140 (0.02%)
56789 = 127 (0.02%)
34567 = 102 (0.01%)
11111 = 99 (0.01%)
45678 = 75 (0.01%)
00000 = 73 (0.01%)
88888 = 68 (0.01%)
 
US Area Codes
971 = Oregon:  Metropolitan Portland,
               Salem/Keizer area,
               incl Cricket Wireless (OR)
972 = Texas: Dallas Metro (TX)
234 = NE Ohio: Canton, Akron (OH)
 
Character sets
loweralphanum: 330937 (43.6%)
loweralpha: 154996 (20.42%)
numeric: 119581 (15.75%)
mixedalphanum: 41121 (5.42%)
upperalphanum: 41078 (5.41%)
mixedalpha: 28464 (3.75%)
upperalpha: 14072 (1.85%)
loweralphaspecial: 10222 (1.35%)
loweralphaspecialnum: 5735 (0.76%)
mixedalphaspecial: 4724 (0.62%)
upperalphaspecial: 2939 (0.39%)
mixedalphaspecialnum: 2247 (0.3%)
specialnum: 648 (0.09%)
upperalphaspecialnum: 374 (0.05%)
special: 47 (0.01%)
 
Character set ordering
stringdigit: 349534 (46.05%)
allstring: 197532 (26.02%)
alldigit: 119581 (15.75%)
digitstring: 28873 (3.8%)
othermask: 18649 (2.46%)
stringdigitstring: 14577 (1.92%)
stringspecial: 10441 (1.38%)
digitstringdigit: 9981 (1.31%)
stringspecialstring: 5469 (0.72%)
stringspecialdigit: 3075 (0.41%)
specialstring: 834 (0.11%)
specialstringspecial: 510 (0.07%)
allspecial: 47 (0.01%)
 
Hashcat masks (Top 10)
?d?d?d?d?d?d?d: 85053 (11.2%)
?l?l?l?l?l?l: 38400 (5.06%)
?l?l?l?l?l?l?l?l: 36217 (4.77%)
?l?l?l?l?l?l?l: 35468 (4.67%)
?l?l?l?l?l?l?d?d?d: 24051 (3.17%)
?l?l?l?l?l?l?d?d: 18591 (2.45%)
?l?l?l?l?l?d?d?d: 18047 (2.38%)
?d?d?d?d?d?d: 16048 (2.11%)
?l?l?l?l?l?l?l?l?l: 14236 (1.88%)
?l?l?l?l?d?d?d: 13802 (1.82%)

Conclusion

This was a very time consuming and a hard job because I do not own the fastest graphics card. The whole cracking process took about 5 months to accomplish because I had to finish my studies for CCNP certification. The lesson learned from this is that with a good and smart dictionary combined with handy rules either for hashcat or John the Ripper even strong passwords can be cracked. Based on the above statement, admins should use a stronger hash algorithm (with salt) to store your passwords and on your side just change your passwords in a regular basis.

Thanks for reading.

You can find me on twitter, @m3g9tr0n.

Downloads

You can download the results of the cracked hashes:

721.9 MB - m3g9tr0n_122Million_Passwords_WordLists.zip

The provided KoreLogic torrent file contains various but unique password hashes. For that reason you may find duplicated passwords in these wordlists, as a single password can be hashed using various algorithmes! Meaning that 122 million unique hashes (MD5, SHA1, double MD5, etc.) were cracked and result in 83,6 million unique passwords.

You can download the “all in one” version, cleaned and sorted:

270.2 MB - m3g9tr0n_Passwords_WordList_CLEANED.zip

The command used to generate this "all in one" CLEANED wordlist was:

export LC_ALL=‘C‘ && cat * | sort | uniq > eNtr0pY_ALL_sort_uniq.dic

References

Related terms:

Thireus

时间: 2024-10-19 20:58:55

Cracking Story - How I Cracked Over 122 Million SHA1 and MD5 Hashed Passwords的相关文章

加盐密码哈希:如何正确使用

Salted Password Hashing - Doing it Right If you're a web developer, you've probably had to make a user account system. The most important aspect of a user account system is how user passwords are protected. User account databases are hacked frequentl

美国政府关于Google公司2013年度的财务报表红头文件

请管理员移至新闻版块,谢谢! 来源:http://www.sec.gov/ 财务报表下载↓ 此文仅作参考分析. 10-K 1 goog2013123110-k.htm FORM 10-K UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549     FORM 10-K (Mark One)       ý ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF TH

Top 10 Free Wireless Network hacking/monitoring tools for ethical hackers and businesses

There are lots of free tools available online to get easy access to the WiFi networks intended to help the network admins and the programmers working on the WiFi systems and we at Team Techworm have picked the top 10 of those for ethical hackers, pro

[转]加盐hash保存密码的正确方式

0x00 背景 大多数的web开发者都会遇到设计用户账号系统的需求.账号系统最重要的一个方面就是如何保护用户的密码.一些大公司的用户数据库泄露事件也时有发生,所以我们必须采取一些措施来保护用户的密码,即使网站被攻破的情况下也不会造成较大的危害.保护密码最好的的方式就是使用带盐的密码hash(salted password hashing).对密码进行hash操作是一件很简单的事情,但是很多人都犯了错.接下来我希望可以详细的阐述如何恰当的对密码进行hash,以及为什么要这样做. 0x01 重要提醒

tp5下php微信开发之上传图片素材

直接源代码了,比较累不想写了,里面由之前的基本的,本部分功能在最下面的2个函数里. 1 <?php 2 3 namespace app\index\controller; 4 5 use think\Controller; 6 7 //define your token 8 define("TOKEN", "weixin");//定义token 9 10 Class Index extends Controller 11 { 12 public functio

Java常用jar包用途

Java常用jar包用途: USAGE INDEX JAR NAME USAGE 1 ASM asm-2.2.3.jar ASM字节码库 2 ASM asm-commons-2.2.3.jar ASM字节码库 3 ASM asm-util-2.2.3.jar Java字节码操纵和分析框架 4 COMMONS commons-discovery-0.2.jar 用来发现.查找和实现可插入式接口,提供一些一般类实例化.单件的生命周期管理的常用方法. 5 COMMONS commons-beanuti

Microsoft-office 常见问题

1.工作表写入保护,忘记密码,解决办法: 流程如下: 1打开文件2工具---宏----录制新宏---输入名字如:aa3停止录制(这样得到一个空宏)4工具---宏----宏,选aa,点编辑按钮5删除窗口中的所有字符(只有几个),替换为下面的内容: 1 Public Sub AllInternalPasswords() 2 ' Breaks worksheet and workbook structure passwords. Bob McCormick 3 ' probably originato

C#对文件进行MD5值检测

1 using System; 2 using System.Collections.Generic; 3 using System.Linq; 4 using System.Text; 5 using System.Threading.Tasks; 6 using System.ComponentModel; 7 using System.Data; 8 using System.Drawing; 9 using System.IO; 10 using System.Security.Cryp

Openfire Strophe开发中文乱码问题

网站上有很多Openfire Web方案,之前想用Smack 但是jar包支持客户端版本的,还有JDK版本问题  一直没调试成功  估计成功的方法只能拜读源码进行修改了. SparkWeb 官网代码很久没维护  CSDN上下来个版本但jar包路径不对  花了不少时间总算能跑起来,不过版本是flex3版本,太老了   自己花精力升级有点费时间呀 最后采用存脚本开发Strophejs,下面网站写的很详细 学习的网站:http://www.dotblogs.com.tw/sungnoone/archi