机器学习基础——模型参数评估与选择

当看过一些简单的机器学习算法或者模型后,对于具体问题该如何评估不同模型对具体问题的效果选择最优模型呢。

1. 经验误差、泛化误差



假如m个样本中有a个样本分类错误

错误率:E = a / m;

精度:  1 - E

训练误差: 又叫经验误差,是指算法/模型在训练样本上的误差

泛化误差:算法/模型在新样本上的误差

显然我们希望得到泛化误差小的机器学习算法。

2.欠拟合、 过拟合



欠拟合:欠拟合是指讯息能力低下,本来一些有的特征没有学习到。

解决方法:欠拟合一般比较容易克服,例如在决策树学习中扩展分支在神经网络学习中增加学习轮数就可以。

过拟合:模型把训练样本学的“太好”,很可能把训练样本自身的一些特点当做了所有潜在样本都会具有的一般性质,这样就会导致泛化能力下降。

解决方法: 很难克服或者彻底避免。

下面这张图对欠拟合/过拟合解析的十分到位:

3. 评估方法——留出法



直接将数据集D划分成两个互斥的集合,其中一个作为训练集S,另一个作为测试集T 即: D = S ∪ T , S ∩ T = ? . 在S上训练出模型后用T来评估其测试误差,作为泛化误差的评估。

需要注意的训练/测试集的划分要尽可能的保持数据分布的一致性,避免因数据划分过程引入额外的偏差而对最终结果产生影响。 如果从采样的角度看数据集划分过程,则保留类别比例的采样方式通常称为分层采样

单层留出法得到的评估结果往往不够稳定可靠,在使用留出法时,一般采用若干次随机划分、重复进行试验评估后取平均值为留出法结果。

缺点: 若训练集S包含绝大多数样本则训练出的模型可能更接近与用D训练处的模型,但由于T比较小,评估结果可能不够稳定准确。 若令测试机包含多一些样本,则训练集S与D差别更大,被评估的模型与用D训练出的模型相比可能有较大差别,从而降低了评估结果的保真性。   常见的做法是将 2/3 ~ 4/5 的样本用于训练,剩余样本用于测试。

4. 评估方法—交叉验证法



5 . 评估方法——查准率、查全率



对于二分类问题进行如下统计:

查准率:

P  =  TP / (TP + FP)

查全率:

R = TP / (TP + FN)

以预测癌症为例,正例为癌症,反例不是癌症。  查准率表示预测为癌症实际发生癌症的概率,而查全率是指预测为癌症的覆盖率(部分预测为反例但实际情况确实正例)。

其它机器学习算法:

监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd)

监督学习——决策树理论与实践(上):分类决策树

监督学习——决策树理论与实践(下):回归决策树(CART)

监督学习——K邻近算法及数字识别实践

监督学习——朴素贝叶斯分类理论与实践

监督学习——logistic进行二分类(python)

监督学习——AdaBoost元算法提高分类性能

无监督学习——K-均值聚类算法对未标注数据分组

参考:

周志华 《机器学习》

《推荐系统实战》

原文地址:https://www.cnblogs.com/NeilZhang/p/9308870.html

时间: 2024-10-14 18:18:30

机器学习基础——模型参数评估与选择的相关文章

机器学习之模型评估与选择

2.1 经验误差与过拟合 基本概念: 错误率:分类错误数/总样本数 训练误差/经验误差:学习器在训练集上所产生的误差 泛化误差:学习器在测试集上产生的误差 2.2 评估方法 在实际应用中会有多种不同的算法进行选择,对于不同的问题,我们该选择用哪种学习算法和参数配置,是机器学习中的模型选择.无法直接获得泛化误差,训练误差由于过拟合现象的存在也不适合作为标准,我们如何对模型进行评估和选择. 从训练集中随机获取测试集,测试集和训练集互斥.通过对D进行适当的处理,从中产生出训练集S和测试集T,下面介绍几

机器学习:模型评估和选择

2.1 经验误差与拟合 精度(accuracy)和错误率(error rate):精度=1-错误率 训练误差(training error)或经验误差(empirical error) 泛化误差(generalization error) 过拟合(overfitting)和欠拟合(underfitting) 过拟合:小明脸上一个伤口,机器人为没上伤口才是小明,过分在意无关细节,导致该筛的没筛到 欠拟合:身高170就是小明,结果小明好几个 2.2 评估方法 2.2.1 留出法(hold-out)

机器学习笔记(二)模型评估与选择

2.模型评估与选择 2.1经验误差和过拟合 不同学习算法及其不同参数产生的不同模型,涉及到模型选择的问题,关系到两个指标性,就是经验误差和过拟合. 1)经验误差 错误率(errorrate):分类错误的样本数占样本总数的比例.如果在m个样本中有a个样本分类错误,则错误率E=a/m,相应的,1-a/m称为精度(accuracy),即精度=1-错误率. 误差(error):学习器的实际预测输出和样本的真实输出之间的差异.训练误差或经验误差:学习器在训练集上的误差:泛化误差:学习器在新样本上的误差.

机器学习基础2--评价回归模型

再次回到上一节的13次模型. 这个疯狂的曲线造成了一种现象过拟合. 很明显,你的房子不可能只值这么点价钱,所以看上去,这个13次模型甚至还不如一开始的二次模型. 那么现在有个疑问,我们应该怎样去选择最合适的模型? 我们想要准确预测,但是我们无法观测未来. 下面我们模拟一次预测过程: 1.我们随机将一些房子数据排除在外. 2.然后拟合剩下的数据 3.最后进行预测和推断. 术语: 训练集(training set):用来拟合模型的数据. 测试集(test set):排除出去的数据. 训练损失(tra

机器学习基础——带你实战朴素贝叶斯模型文本分类

本文始发于个人公众号:TechFlow 上一篇文章当中我们介绍了朴素贝叶斯模型的基本原理. 朴素贝叶斯的核心本质是假设样本当中的变量服从某个分布,从而利用条件概率计算出样本属于某个类别的概率.一般来说一个样本往往会含有许多特征,这些特征之间很有可能是有相关性的.为了简化模型,朴素贝叶斯模型假设这些变量是独立的.这样我们就可以很简单地计算出样本的概率. 想要回顾其中细节的同学,可以点击链接回到之前的文章: 机器学习基础--让你一文学会朴素贝叶斯模型 在我们学习算法的过程中,如果只看模型的原理以及理

【机器学习 第2章 学习笔记】模型评估与选择

1.训练误差:学习器在训练集上的误差,也称“经验误差” 2.泛化误差:学习器在新样本上的误差 显然,我们的目标是得到在新样本上表现更好的学习器,即泛化误差要小 3.过拟合:学习器把训练样本学的太好了,导致泛化性能下降(学过头了...让我联想到有些人死读书,读死书,僵化,不懂得变通和举一反三) 原因:学习能力过于强大,把一些不太一般的特性也学了进来 针对措施:不好解决,是机器学习面临的关键障碍 4.欠拟合:就是连训练集都没学好,更别说泛化了(有点管中窥豹,盲人摸象的意思). 原因: 学习能力低下

机器学习之模型评估与模型选择(学习笔记)

时间:2014.06.26 地点:基地 -------------------------------------------------------------------------------------- 一.训练误差和测试误差 机器学习或者说统计学习的目的就是使学习到的模型不仅对已知数据而且对未知数据都都很好的预测能力.不同的学习方法会得出不同的模型.在评判学习方法的好坏时,常用的是: 1.基于损失函数的模型的训练误差                          2.模型的测试误

机器学习总结之第二章模型评估与选择

机器学习总结之第二章模型评估与选择 2.1经验误差与过拟合 错误率 = a个样本分类错误/m个样本 精度 = 1 - 错误率 误差:学习器实际预测输出与样本的真是输出之间的差异. 训练误差:即经验误差.学习器在训练集上的误差. 泛化误差:学习器在新样本上的误差. 过拟合:学习器把训练样本学的"太好",把不太一般的特性学到了,泛化能力下降,对新样本的判别能力差.必然存在,无法彻底避免,只能够减小过拟合风险. 欠拟合:对训练样本的一半性质尚未学好. 2.2评估方法 (在现实任务中,还需考虑

【机器学习123】模型评估与选择 (上)

第2章 模型评估与选择 2.1 经验误差与过拟合 先引出几个基本概念: 误差(error):学习器的实际预测输出与样本的真实输出之间的差异. 训练误差(training error):学习器在训练集上的误差,也称"经验误差". 测试误差(testing error):学习器在测试集上的误差. 泛化误差(generalization error):学习器在新样本上的误差. 错误率(error rate):分类错误的样本数占样本总数的比例. 精度(accuracy) = 1 – 错误率.