51nod1229 序列求和 V2 【数学】

题目链接

B51nod1229

题解

我们要求
\[\sum\limits_{i = 1}^{n}i^{k}r^{i}\]
如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\)
否则,我们需要将式子进行变形
要与\(n\)无关

\[F(k) = \sum\limits_{i = 1}^{n} i^{k}r^{i}\]
自然数幂应该是不用去动了,两边乘个\(r\)
\[rF(k) = \sum\limits_{i = 2}^{n + 1}r^{i}(i - 1)^{k}\]
相减得
\[
\begin{aligned}
(r - 1)F(k) &= r^{n + 1}n^{k} - r + \sum\limits_{i = 2}^{n}r^{i}((i - 1)^{k} - i^{k}) \&= r^{n + 1}n^{k} - r + \sum\limits_{i = 2}^{n}r^{i}(\sum\limits_{j = 0}^{k}{k \choose j}(-1)^{k - j}i^{j} - i^{k}) \&= r^{n + 1}n^{k} - r + \sum\limits_{i = 2}^{n}r^{i}\sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}i^{j} \&= r^{n + 1}n^{k} - r + \sum\limits_{i = 2}^{n}\sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}i^{j}r^{i} \&= r^{n + 1}n^{k} - r + \sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}\sum\limits_{i = 2}^{n}i^{j}r^{i} \&= r^{n + 1}n^{k} - r + \sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}(F(j) - r) \\end{aligned}
\]

\[F(k) = \frac{r^{n + 1}n^{k} - r + \sum\limits_{j = 0}^{k - 1}{k \choose j}(-1)^{k - j}(F(j) - r)}{r - 1}\]
边界
\[F(0) = \sum\limits_{i = 1}^{n}r^{i} = r\frac{r^{n} - 1}{r -1}\]
同样可以实现\(O(k^2)\)递推

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 2010,maxm = 100005,INF = 0x3f3f3f3f;
inline LL read(){
    LL out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
    while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
    return flag ? out : -out;
}
const int P = 1000000007;
LL F[maxn],B[maxn],fac[maxn],inv[maxn],fv[maxn],N = 2005;
inline LL qpow(LL a,LL b){
    LL re = 1; a %= P;
    for (; b; b >>= 1,a = 1ll * a * a % P)
        if (b & 1) re = 1ll * re * a % P;
    return re;
}
inline LL C(LL n,LL m){
    if (m > n) return 0;
    return 1ll * fac[n] * fv[m] % P * fv[n - m] % P;
}
void init(){
    fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1;
    for (int i = 2; i <= N; i++){
        fac[i] = fac[i - 1] * i % P;
        inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
        fv[i] = fv[i - 1] * inv[i] % P;
    }
    B[0] = 1;
    for (int k = 1; k < N; k++){
        for (int i = 0; i < k; i++)
            B[k] = (B[k] + C(k + 1,i) * B[i] % P) % P;
        B[k] = 1ll * (P - 1) * inv[k + 1] % P * B[k] % P;
    }
}
LL n,K,r;
void work1(){
    n %= P;
    LL tmp = n,ans = 0;
    for (int i = K; ~i; i--){
        ans = (ans + C(K + 1,i) * B[i] % P * tmp % P) % P;
        tmp = tmp * n % P;
    }
    ans = ans * inv[K + 1] % P;
    printf("%lld\n",(ans + qpow(n,K)) % P);
}
void work2(){
    r %= P;
    LL tmp = qpow(r,n + 1),t,tt = 1,rv = qpow(r - 1,P - 2);
    F[0] = 1ll * (qpow(r,n) + P - 1) % P * rv % P * r % P;
    for (int k = 1; k <= K; k++){
        t = 0; tt = 1ll * tt * (n % P) % P;
        for (int j = 0; j < k; j++)
            t = (t + (((k - j) & 1) ? -1ll : 1ll) * C(k,j) * ((F[j] - r) % P) % P) % P;
        t = (t + P) % P;
        F[k] = ((tmp * tt % P - r) % P + t) % P * rv % P;
    }
    printf("%lld\n",(F[K] + P) % P);
}
int main(){
    init();
    int T = read();
    while (T--){
        n = read(); K = read(); r = read();
        if (r == 1) work1();
        else work2();
    }
    return 0;
}

原文地址:https://www.cnblogs.com/Mychael/p/9296868.html

时间: 2024-10-08 23:57:25

51nod1229 序列求和 V2 【数学】的相关文章

51nod1229 序列求和 V2

这题...毒瘤吧,可能要写两份代码... 传送门 noteskey 我们考虑这里的复杂度肯定是与 k 相关的,而且平方也是没问题的,那么我们先看看 S(k) 能怎么得到: \[\begin{aligned}S(k)=&\sum_{i=1}^n i^k r^i\\ r·S(k)=&\sum_{i=2}^{n+1} (i-1)^k r^i \\ (r-1)S(k)=& r^{n+1}n^k-r+ \sum_{j=2}^{k-1} r^i((j-1)^k-j^k)\\\\ &\t

HDU 2254 奥运(矩阵快速幂+二分等比序列求和)

HDU 2254 奥运(矩阵快速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 根据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k天后就算矩阵的k次方. 这样就变成:初始矩阵的^[t1,t2]这个区间内的v[v1][v2]的和. 所以就是二分等比序列求和上场的时候了. 跟HDU 1588 Gauss Fibonacci的算法一样. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * B

HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析: 把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1,1,

【蓝桥杯】 入门训练 序列求和

入门训练 序列求和 时间限制:1.0s   内存限制:256.0MB 问题描述 求1+2+3+...+n的值. 输入格式 输入包括一个整数n. 输出格式 输出一行,包括一个整数,表示1+2+3+...+n的值. 样例输入 4 样例输出 10 样例输入 100 说明:有一些试题会给出多组样例输入输出以帮助你更好的做题. 一般在提交之前所有这些样例都需要测试通过才行,但这不代表这几组样例数据都正确了你的程序就是完全正确的,潜在的错误可能仍然导致你的得分较低. 样例输出 5050 数据规模与约定 1

HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和)

HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析: 把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1,1,

序列求和

入门训练 序列求和 时间限制:1.0s   内存限制:256.0MB 锦囊1 锦囊2 锦囊3 问题描述 求1+2+3+...+n的值. 输入格式 输入包括一个整数n. 输出格式 输出一行,包括一个整数,表示1+2+3+...+n的值. 样例输入 4 样例输出 10 样例输入 100 说明:有一些试题会给出多组样例输入输出以帮助你更好的做题. 一般在提交之前所有这些样例都需要测试通过才行,但这不代表这几组样例数据都正确了你的程序就是完全正确的,潜在的错误可能仍然导致你的得分较低. 样例输出 505

51_1228 序列求和(伯努利数)(转)

转自:http://blog.csdn.net/acdreamers/article/details/38929067 (ACdreamers) 分析:本题题意就是求自然数的幂和,但是它的case比较多.对于求幂和本身就需要的时间复杂度,如果继 续用上述方法来求自然数的幂和,5000个case会TLE,接下来介绍另一个求自然数幂和的方法,它是基于伯 努利数的,公式描述如下 可以看出只要我们预处理出每一项,就可以在线性时间内求得自然数的幂和.前面的倒数可以用递推法求逆元 预处理,组合数也可以预处理

蓝桥杯-入门训练 序列求和

入门训练 序列求和 时间限制:1.0s   内存限制:256.0MB 问题描述 求1+2+3+...+n的值. 输入格式 输入包括一个整数n. 输出格式 输出一行,包括一个整数,表示1+2+3+...+n的值. 样例输入 4 样例输出 10 样例输入 100 说明:有一些试题会给出多组样例输入输出以帮助你更好的做题. 一般在提交之前所有这些样例都需要测试通过才行,但这不代表这几组样例数据都正确了你的程序就是完全正确的,潜在的错误可能仍然导致你的得分较低. 样例输出 5050 数据规模与约定 1

51nod1236 序列求和 V3 【数学】

题目链接 51nod1236 题解 用特征方程求得斐波那契通项: \[f(n) = \frac{(\frac{1 + \sqrt{5}}{2})^{n} - (\frac{1 - \sqrt{5}}{2})^{n}}{\sqrt{5}}\] 那么 \[ \begin{aligned} ans &= \sum\limits_{i = 1}^{n} (\frac{(\frac{1 + \sqrt{5}}{2})^{i} - (\frac{1 - \sqrt{5}}{2})^{i}}{\sqrt{5}