[转] 拉格朗日乘数法

数学最优化问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。

此方法的证明牵涉到偏微分全微分链法,从而找到能让设出的隐函数的微分为零的未知数的值。

介绍

先看一个二维的例子:假设有函数:f(x,y),要求其极值(最大值/最小值),且

c 为常数。对不同dn的值,不难想像出

的等高线。而方程g的等高线正好是g(x,y) = c。想像我们沿着g = c的等高线走;因为大部分情况下fg的等高线不会重合,但在有解的情况下,这两条线会相交。想像此时我们移动g = c上的点,因为f是连续的方程,我们因此能走到更高或更低的等高线上,也就是说dn可以变大或变小。只有当g = c相切,也就是说,此时,我们正同时沿着g = c走。这种情况下,会出现极值鞍点

气象图中就很常出现这样的例子,当温度和气压两列等高线同时出现的时候,切点就意味着约束极值的存在。

向量的形式来表达的话,我们说相切的性质在此意味着fg的斜率在某点上平行。此时引入一个未知标量λ,并求解:

λ ≠ 0.

一旦求出λ的值,将其套入下式,易求在无约束极值和极值所对应的点。

=

新方程F(x,y)在达到极值时与f(x,y)相等,因为F(x,y)达到极值时g(x,y) − c总等于零。

拉格朗日乘数的运用方法

f定义为在Rn上的方程,约束为gkx)= ck(或将约束左移得到gk(x) − ck = 0)。定义拉格朗日Λ

注意极值的条件和约束现在就都被记录到一个式子里了:

拉格朗日乘数常被用作表达最大增长值。原因是从式子:

中我们可以看出λk是当方程在被约束条件下,能够达到的最大增长率。拉格朗日力学就使用到这个原理。

拉格朗日乘数法在Karush-Kuhn-Tucker最优化条件被推广。

例子

很简单的例子

求此方程的最大值:

f(x,y) = x2y

同时未知数满足

x2 + y2 = 1

因为只有一个未知数的限制条件,我们只需要用一个乘数λ.

g(x,y) = x2 + y2 − 1
Φ(x,y,λ) = f(x,y) + λg(x,y) = x2y + λ(x2 + y2 − 1)

将所有Φ方程的偏微分设为零,得到一个方程组,最大值是以下方程组的解中的一个:

2xy + 2λx = 0
x2 + 2λy = 0
x2 + y2 − 1 = 0

另一个例子

求此离散分布的最大

所有概率的总和是1,因此我们得到的约束是gp)= 1即

可以使用拉格朗日乘数找到最高熵(概率的函数)。对于所有的k 从1到n,要求

由此得到

计算出这n个等式的微分,我们得到:

这说明pi都相等 (因为它们都只是λ的函数). 解出约束∑k pk = 1,得到

因此,使用均匀分布可得到最大熵的值。

经济学

约束最优化在经济学占有很重要的地位。例如一个消费者的选择问题可以被视为一个求效用方程预算约束下的最大值问题。拉格朗日乘数在经济学中被解释为影子价格,设定在某种约束下,在这里即收入的边际效用

拉格朗日乘数就是效用函数在最优解出对收入的偏导数,也就是在最优解处增加一个单位收入带来的效用增加,或者说在最优解处有效用衡量收入的价值,称之为收入的边际效用。

在企业生产问题中,拉格朗日乘数用来衡量要素投入变动所带来的收入变动,du/dm=λ,u表示效用函数或生产函数,m表示收入或要素投入。

在具体数学推导中还可以运用包络定理的内容。

原文转自:http://www.cnblogs.com/yysblog/archive/2011/10/23/2221987.html

时间: 2024-11-07 10:42:26

[转] 拉格朗日乘数法的相关文章

拉格朗日乘数法

目录(?)[-] 介绍 拉格朗日乘数的运用方法 例子 很简单的例子 另一个例子 经济学 在数学最优化问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法.这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束.这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数. 此方法的证明牵涉到偏微分,全微分或链法,从

拉格朗日乘数法与KKT条件

关于拉格朗日乘数法和KKT条件的一些思考 从我开始接触拉格朗日乘数法到现在已经将近有四个月了,但似乎直到今天我对其的理解才开始渐渐清晰,相信很多人在科研初期也会对一些基础的算法困惑不解,而一篇好的教程则可以大大缩短困惑的时间,从而把更多时间用在开创性的工作上去.经过近几日的搜索,我发现网上还是有一些说明是很不错得,英文较好的同学可以直接去阅读Hugo的介绍(http://www.onmyphd.com/?p=lagrange.multipliers).下面是我近几日学下来的一些见解,看下来如果有

[Math & Algorithm] 拉格朗日乘数法

拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学到的知识一定要立刻记录下来,希望对各位博友有些许帮助. 1. 拉格朗日乘数法的基本思想 作为一种优化算法,拉格朗日乘子法主要用于解决约束优化问题,它的基本思想就是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题.拉格朗日乘子背后的数学意义是其

浅谈拉格朗日乘数法

最近偶然看到一篇文章介绍到拉格朗日乘数法, 先贴出地址:cnblogs.com/maybe2030/p/4946256.html 因为我也是刚学了这个方法,对这个东西一知半解,然而初读这篇文章后,感觉有必要好好搞懂这个东西,因为原文写的比较正式,有一些晦涩的词汇难以理解,所以我自己翻书重新学习了一下,以下是个人感悟,并不权威,欢迎指摘! 高等数学同济第5版中这样讲: 要找到函数z=f(x,y)在附加条件g(x,y)=0下的可能极值点,可令L(x,y)=f(x,y)+ug(x,y); 解出x,y,

《University Calculus》-chaper12-多元函数-拉格朗日乘数法

求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通过直接代换消元的方法似乎会出现一些问题. 比如这个例题. 它面临的问题是,代换消元然后通过求偏导得来的驻点,我们无法控制其满足约束条件g(x,y,z),因此我们需要寻找新的方法来解决这种条件极值问题. 首先这里给出方向导数和梯度中给出的等式关系,这个具体的由来我们会在该小结中详细介绍. 对于可微函数

bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details/51346228 用拉格朗日乘数法,求了偏导之后二分λ.然后求完偏导的那个一元三次式的解可以二分求,因为是单调递增的. 总复杂度\( O(nlog^2n) \) #include<cstdio> #include<cmath> using namespace std; const i

bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地.同时合理分配好自己的体力是一件非常重要的事情. 由于蛋蛋装备了一辆非常好的自行车,因此在骑行过程中可以认为他仅在克服风阻做功(不受自行车本身摩擦力以及自行车与地面的摩擦力影响).某一天他打算骑\(N\)段路,每一段内的路况可视为相同:对于第\(i\)段路,我们给出有关这段路况的3个参

ML(附录4)——拉格朗日乘数法

基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解.拉格朗日乘子是数学分析中同一名词的推广. 什么是拉格朗日乘数法 简单地说,拉格朗日乘数法是用来最小化或最大化多元函数的.如果有一个方程f(x,y,z),在这个方程里的变量之间不是独立的,也就是说这

寻找“最好”(3)——函数和泛函的拉格朗日乘数法

拉格朗日乘数法 大多数的优化问题都会加入特定的约束,而不仅仅是指定起点和终点,此时需要更好的办法去解决优化问题,拉格朗日乘数法正是一种求约束条件下极值的方法. 简单地说,拉格朗日乘数法(又称为拉格朗日乘数法)是用来最小化或最大化多元函数的.如果有一个方程f(x,y,z),在这个方程里的变量之间不是独立的,也就是说这些变量之间是有联系的,这个联系可能是某个方程g(x,y,z) = C:也就是g(x,y,z) = C定义了x,y,z之间的关系,这个关系对变量做出了一定的的限制,我们需要在这个限制下来