【图论】最优贸易

[NOIP2009]最优贸易

描述

  C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。 
C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。 商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。 假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。

                                        

假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。 
阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3号城市以 5的价格卖出水晶球,赚取的旅费数为 2。 
阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。

现在给出 n个城市的水晶球价格,m条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况) 。请你告诉阿龙,他最多能赚取多少旅费。

格式

输入格式

第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的
数目。 
第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城
市的商品价格。 
接下来 m行, 每行有 3 个正整数, x, y, z, 每两个整数之间用一个空格隔开。 如果 z=1,
表示这条道路是城市 x到城市 y之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市
y之间的双向道路。

输出格式

输出共1 行, 包含 1 个整数, 表示最多能赚取的旅费。 如果没有进行贸易,
则输出 0。

样例1

样例输入1

5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2 

样例输出1

5

限制

每个测试点1s

输入数据保证 1 号城市可以到达n 号城市。
对于 10%的数据,1≤n≤6。
对于 30%的数据,1≤n≤100。
对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市
水晶球价格≤100。

试题分析:比较水的一道题,先正向建图,然后求出1到每个点的经过的最小价格。然后反向建图,求出N到每个点经过的最大价格。

     统计答案用每个点到N点最大价格减去每个点到1点最小价格选取最大值即可。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std;

const int INF=999999;
const int MAXN=1000001*2;

inline int read(){
	int x=0,f=1;char c=getchar();
	for(;!isdigit(c);c=getchar()) if(c==‘-‘) f=-1;
	for(;isdigit(c);c=getchar()) x=x*10+c-‘0‘;
	return x*f;
}

int N,M;
int Cost[MAXN],Root[MAXN],Next[MAXN],Node[MAXN];
bool inq[MAXN];int dis[MAXN];
int cnt;int Que[MAXN];
int val[MAXN];
int u[MAXN],v[MAXN],k[MAXN];
int dis2[MAXN];

void addedge(int u,int v,int w){
	cnt++;
	Cost[cnt]=w;
	Node[cnt]=v;
	Next[cnt]=Root[u];
	Root[u]=cnt;
	return ;
}
int SPFA(int s,int t){
	memset(inq,false,sizeof(inq));
	for(int i=1;i<=N;i++) dis[i]=INF;
	dis[s]=val[s];inq[s]=true;
	int tail=1;Que[tail]=s;
	for(int head=1;head<=tail;head++){
		for(int x=Root[Que[head]];x;x=Next[x]){
			if(dis[Node[x]]>min(dis[Que[head]],Cost[x])){
				dis[Node[x]]=min(dis[Que[head]],Cost[x]);
				if(!inq[Node[x]]){
					inq[Node[x]]=true;
					Que[++tail]=Node[x];
				}
			}
		}
		inq[Que[head]]=false;
	}
}
int SPFA2(int s,int t){
	memset(inq,false,sizeof(inq));
	for(int i=1;i<=N;i++) dis2[i]=0;
	dis2[s]=val[s];inq[s]=true;
	int tail=1;Que[tail]=s;
	for(int head=1;head<=tail;head++){
		for(int x=Root[Que[head]];x;x=Next[x]){
			if(dis2[Node[x]]<max(dis2[Que[head]],Cost[x])){
				dis2[Node[x]]=max(dis2[Que[head]],Cost[x]);
				if(!inq[Node[x]]){
					inq[Node[x]]=true;
					Que[++tail]=Node[x];
				}
			}
		}
		inq[Que[head]]=false;
	}
}
int ans;
int main(){
    N=read(),M=read();
    for(int i=1;i<=N;i++) val[i]=read();
    for(int i=1;i<=M;i++){
    	u[i]=read(),v[i]=read(),k[i]=read();
    	if(k[i]==1||k[i]==2) addedge(u[i],v[i],val[v[i]]);
    	if(k[i]==2) addedge(v[i],u[i],val[u[i]]);
	}
	cnt=0;
	SPFA(1,N);
	memset(Next,0,sizeof(Next));
	memset(Node,0,sizeof(Node));
	memset(Cost,0,sizeof(Cost));
	memset(Root,0,sizeof(Root));
	for(int i=1;i<=M;i++){
    	if(k[i]==1||k[i]==2) addedge(v[i],u[i],val[u[i]]);
    	if(k[i]==2) addedge(u[i],v[i],val[v[i]]);
	}
	SPFA2(N,1);
	for(int i=1;i<=N;i++) ans=max(ans,dis2[i]-dis[i]);
	printf("%d\n",ans);
	return 0;
}

  

时间: 2024-10-13 05:33:07

【图论】最优贸易的相关文章

NOIP2009 最优贸易

最优贸易 题目描述 Description C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条. C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同.但是,同一种商品在同一个城市的买入价和卖出价始终是相同的. 商人阿龙来到 C 国旅游.当他得知同一种商品在不同城市的价格可能会不同这

vijos1754:最优贸易

开始的时候脑子抽风了又以为是floyed.分明和以前做过的一道题的方法类似好不好qwq.逆向存储+分两部分就ok了...spfa感觉真心强大. ---------------------------------------------------------------------------------------------------------------------- P1754最优贸易 Accepted 标签:NOIP提高组2009[显示标签] 描述 C 国有 n 个大城市和 m 条

luogu P1073 最优贸易

luogu P1073 最优贸易 2017-09-14 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条. C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同.但是,同一种商品在同一个城市的买入价和卖出价始终是相同的. 商人阿龙来到 C 国旅游.当他得知同一种商品在不同

洛谷P1073 最优贸易==codevs1173 最优贸易

P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路,双向通行的道路在统计条数时也计为 1 条. C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价 格不一定相同.但是,同一种商品在同一个城市的买入价和卖出价始终是相同的. 商人阿龙来到 C 国旅游.当他得知同一种商品在不同城市的价格可能会不同这一信息

P1073 最优贸易

P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路,双向通行的道路在统计条数时也计为 1 条. C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价 格不一定相同.但是,同一种商品在同一个城市的买入价和卖出价始终是相同的. 商人阿龙来到 C 国旅游.当他得知同一种商品在不同城市的价格可能会不同这一信息

最优贸易

最优贸易 (trade.pas/c/cpp) [问题描述] C 国有 n 个大城市和 m条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条. C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同.但是,同一种商品在同一个城市的买入价和卖出价始终是相同的. 商人阿龙来到 C 国旅游.当他得知同一种商品在不同城市的价格

[NOIP2009提高组]最优贸易 tarjan题解

今天刚刚学会了用tarjan写缩点(以前用两遍dfs写的),此题调了我很久,需要考虑的情况有些多,但是做出来还是挺开心的. 首先通过tarjan缩点,之后要干的事情就是计算答案. 答案有两种情况,一是在一个联通块中买进卖出,二是在一个联通块中买入,但在另外一个联通块中卖出.但是需要注意的是,以上两种情况中的联通块需要满足起点可以到达它,它也可以到达终点,并且不在一个联通块中时,买进必在卖出前. 代码中的dp(x)记录的是从起点到现在买进价最低的,每次只要用当前最大价钱减去这个值,再去和ans做比

P1073 最优贸易 建立分层图 + spfa

P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073 题意: 有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差价.(旅游为主,赚钱为辅,所以买入和卖出只进行一次. 思路: 建一个有三层的图,三层都是相同的普通的城市路线,第一层向第二层连从第i个城市买入商品的花费,第二层向第三层连从第i个城市卖出商品的所得.从1 向 第一层的终点 ,向第三层的终点跑一遍最大路就行了. #include <algorithm>

[题解]「最短路,Noip2009」最优贸易

题意: 在一张节点有权的图上找出一条从1到N的路径,使路径上的两点A , B的差值权最大(两个点互相经过). 题解: 考虑将这张图中双向路看成两条方向相反的单向道路,并把这张图看成有向图. 建立一张反图,从1->N和N->1分别跑最短路,求出每个点能经过的最小权与最大权. 最后枚举每个结点,更新出点的最小权与最大权的最大差值即可. 代码片: 1 #include <iostream> 2 #include <cstdio> 3 #include <algorith