hdu 3473 Minimum Sum 再来一波划分树,对划分树累觉不爱。

Minimum Sum

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 3084    Accepted Submission(s): 710

Problem Description

You are given N positive integers, denoted as x0, x1 ... xN-1. Then give you some intervals [l, r]. For each interval, you need to find a number x to make
as small as possible!

Input

The first line is an integer T (T <= 10), indicating the number of test cases. For each test case, an integer N (1 <= N <= 100,000) comes first. Then comes N positive integers x (1 <= x <= 1,000, 000,000) in the next line. Finally,
comes an integer Q (1 <= Q <= 100,000), indicting there are Q queries. Each query consists of two integers l, r (0 <= l <= r < N), meaning the interval you should deal with.

Output

For the k-th test case, first output “Case #k:” in a separate line. Then output Q lines, each line is the minimum value of
. Output a blank line after every test case.

Sample Input

2

5
3 6 2 2 4
2
1 4
0 2

2
7 7
2
0 1
1 1

Sample Output

Case #1:
6
4

Case #2:
0
0

我感觉划分树在遍历的时候最痛苦。哎,总是在推区间,区间真的很容易推错。

有一个数列 x1..xn,要求一个数x使得 ∑(abs(xi-x))值最小,很明显,对数列进行排序后最中间的那个数就是x,可用划分树求得,那么如何求和呢,经过计算可知,既然

x 是最中间的那个数,那么最后的和 即为 x左边 xmid-x1+xmid-x2.. +  x(mid+1) - xmid + x(mid+2)-xmid..  整理得 xmid*(lefnum-rignum)+rigsum-lefsum

lefnum为划分过程进入左子树的个数,lefsum为进入左子树的数之和

上面是正常的思路,我来说一个非常规的思路,int ans = 0 ;我们直接遍历的时候,如果中位数为x,如果x在左子树,那我们ans+=区间内进入右子树所有数之和。如果x在右子树,那我们ans-=区间内进入左子树的,一直到找到x结束。这样我们就巧妙的上面的俩个过程合在了一起

哎,由于错把循环变量j写成了i,,拿着别人的代码调试了一晚上,结果代码和别人的长的差不多了,,无力

另外需要注意的是,,这道题对内存要求的比较紧,,数组不能太大。

下面是代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAX 100100

using namespace std ;

long long sum[25][MAX];
int sorted[MAX] , tree[25][MAX] ,toLeft[25][MAX] ;
void creat(int L , int R , int deep)
{
	if(L == R)
	{
		sum[deep][L]=tree[deep][L] ;
		return ;
	}
	int mid = (L+R)>>1 , same = mid-L+1;

	for(int i = L ; i <= R ; ++i)
	{
		if(tree[deep][i]<sorted[mid])
			--same ;
		sum[deep][i] = tree[deep][i] ;
		if(i>L)	sum[deep][i] += sum[deep][i-1] ;
	}
	int ls = L ,rs = mid+1;
	for(int i = L ; i <= R ; ++i)
	{
		int flag = 0 ;
		long long num = 0;
		if(tree[deep][i]<sorted[mid] || (tree[deep][i]==sorted[mid] && same))
		{
			tree[deep+1][ls++]=tree[deep][i] ;
			if(tree[deep][i] == sorted[mid])
				--same ;
			flag = 1 ;
		}
		else
		{
			tree[deep+1][rs++] = tree[deep][i] ;
		}
		toLeft[deep][i] = toLeft[deep][i-1]+flag ;
	}
	creat(L,mid,deep+1) ;
	creat(mid+1,R,deep+1) ;
}
long long ans = 0;
int query(int L , int R , int x , int y , int k , int deep)
{
	if(x == y)
	{
		return tree[deep][x] ;
	}
	int  mid = (L+R)>>1;
	int lxl = toLeft[deep][x-1] - toLeft[deep][L-1] ;
	int lyl = toLeft[deep][y] - toLeft[deep][L-1] ;
	int xyl = toLeft[deep][y] - toLeft[deep][x-1] ;
	int lxr = x-L-lxl ;
	int lyr = y-L+1-(toLeft[deep][y]-toLeft[deep][L-1]) ;

	if(k<=xyl)
	{
		if(lyr>0)
		{
			if(lxr>0)
			{
				ans += sum[deep+1][mid+lyr]-sum[deep+1][mid+lxr];
			}
			else
			{
				ans += sum[deep+1][mid+lyr] ;
			}
		}
		return query(L,mid,L+lxl,L+lyl-1,k,deep+1);
	}
	else
	{
		if(lyl>0)
		{
			if(lxl>0)	ans-=sum[deep+1][L+lyl-1]-sum[deep+1][L+lxl-1];
			else	ans -= sum[deep+1][L+lyl-1] ;
		}
		return query(mid+1,R,mid+lxr+1,mid+lyr,k-xyl,deep+1);
	}

}

int main()
{
	int t ;
	scanf("%d",&t);
	for(int i = 1 ; i <= t ; ++i)
	{
		int n ;
		scanf("%d",&n);
		memset(toLeft,0,sizeof(toLeft)) ;
		for(int j = 1 ; j <= n ; ++j)
		{
			scanf("%d",&sorted[j]) ;
			tree[0][j] = sorted[j] ;
		}
		sort(sorted+1 , sorted+n+1) ;
		creat(1,n,0) ;
		int r ;
		printf("Case #%d:\n",i) ;
		scanf("%d",&r) ;
		for(int j = 0 ; j < r ; ++j)
		{
			int l,ri;
			scanf("%d%d",&l,&ri) ;
			++l,++ri;
			int k = (ri-l)/2+1;
			ans = 0 ;
			int d = query(1,n,l,ri,k,0);
			if((ri-l+1)%2 == 0)
			{
				ans -= d ;
			}
			printf("%I64d\n",ans);
		}
		printf("\n") ;
	}
	return 0 ;
}
时间: 2024-11-08 15:10:30

hdu 3473 Minimum Sum 再来一波划分树,对划分树累觉不爱。的相关文章

hdu 3473 Minimum Sum(划分树-sum操作)

划分树.只是考虑求当前区间大于第k值的值得和,和小于第k值的和.显然可以在查询的时候直接搞出来.sum[d][i]表示第d层子区间l,r种l-i的和.写错了一个下标,检查了半辈子... #include<algorithm> #include<iostream> #include<cstring> #include<vector> #include<cstdio> #include<cmath> #include<queue&g

hdu 3473 Minimum Sum 划分树的应用

链接:http://acm.hdu.edu.cn/showproblem.php?pid=3473 Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3427    Accepted Submission(s): 787 Problem Description You are given N positive i

HDU 3473 Minimum Sum 划分树

题目大意:给定一个序列,每次询问给出一个区间,我们需要选择一个数,这个数到区间内所有数的距离之和最小,求最小和 由绝对值不等式可得 当我们选择的这个数是中位数的时候距离和最小 于是这题就转换成了区间第k小 但是这题求的是最小和 于是我们做一个处理 我们多维护一个sum域 sum[i]表示[l,i]区间内划分到左子树中元素的总和 然后我们每次查询第k小时 如果我们进入的是右子树 就把划分到左子树中的元素和累加到left_sum上 然后用前缀和计算出区间的和 计算出right_sum 最后的结果就是

HDU 3473 Minimum Sum

Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2667    Accepted Submission(s): 609 Problem Description You are given N positive integers, denoted as x0, x1 ... xN-1. Then give you

HDU 3473 Minimum Sum 划分树,数据结构 难度:1

http://acm.hdu.edu.cn/showproblem.php?pid=3473 划分树模板题目,需要注意的是划分树的k是由1开始的 划分树: 参考:http://blog.csdn.net/shiqi_614/article/details/8041390 划分树的定义 划分树定义为,它的每一个节点保存区间[lft,rht]所有元素,元素顺序与原数组(输入)相同,但是,两个子树的元素为该节点所有元素排序后(rht-lft+1)/2个进入左子树,其余的到右子树,同时维护一个num域,

HDOJ 3473 Minimum Sum

划分树,统计每层移到左边的数的和. Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2959    Accepted Submission(s): 684 Problem Description You are given N positive integers, denoted as x0, x1 ... x

【HDOJ】3473 Minimum Sum

划分树解.主席树解MLE. 1 /* 3473 */ 2 #include <iostream> 3 #include <sstream> 4 #include <string> 5 #include <map> 6 #include <queue> 7 #include <set> 8 #include <stack> 9 #include <vector> 10 #include <deque>

hdu 3473 (划分树)2

Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4611    Accepted Submission(s): 1046 Problem Description You are given N positive integers, denoted as x0, x1 ... xN-1. Then give you

hdu 1394 Minimum Inversion Number

题目链接:hdu 1394 Minimum Inversion Number 该题是求最小逆序对的扩展.可以使用树状数组来实现.对于$n$个数的序列$A$,其第$i$个数($i\in [0,n)$)的逆序数$r_i$可以表示为它的角标$i$减去在它之前且不大于它的数的个数.例如对序列A = {1,3,5,9,0,8,5,7,4,2}中的数,A[8] = 4.其逆序数$r_8 = 8 - 3 = 5$,第二个3表示三个在它前面且比它小的数:{1,3,0}.从而我们可以得到第$i$个数的逆序数公式: