关于最小割的求解方法

由网络最大流最小割定理可以很容易的知道,最小割在数值上是等于最大流的。

【1】如果题目要求的是最小割的数值,那么只要跑一遍网络最大流即可得出答案。

【2】如果要求的是S集合和T集合,那么先跑一遍网络最大流,然后在跑完网络最大流的残留网络中,从源点Vs开始进行DFS,能遍历到的节点都属于S集合,最终,剩下的节点都属于T集合。

【3】如果要求的是最小割由哪些弧构成,那么可以在邻接表中寻找,一个点在S集合一个点在T集合的弧就是构成最小割的弧。

PS:最小割中所有的前向弧在网络最大流中一定是饱和的弧,但饱和的弧不一定就是最小割中的弧。

时间: 2024-10-25 14:17:55

关于最小割的求解方法的相关文章

zoj3792--Romantic Value(最大流+最小割,求解割边)

Romantic Value Time Limit: 2 Seconds      Memory Limit: 65536 KB Farmer John is a diligent man. He spent a lot of time building roads between his farms. From his point of view, every road is romantic because the scenery along it is very harmonious an

求无向图最小割

先解释下名词的意思. 无向图的割:就是去掉一些边,使得原图不连通,最小割就是要去掉边的数量最小. 解决这个问题的常用办法就是Stoer-Wagner 算法: 先说下这个算法的步骤后面给出证明: 1.min=MAXINT,固定一个顶点P 2.从点P用类似prim的s算法扩展出"最大生成树",记录最后扩展的顶点和最后扩展的边 3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min 4.合并最后扩展的那条边的两个端点为一个顶点 5.转到2,合并N-1次后结束

hiho一下 第119周 #1398 : 网络流五·最大权闭合子图 【最小割-最大流--Ford-Fulkerson 与 Dinic 算法】

#1398 : 网络流五·最大权闭合子图 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编号1..M),邀请编号为i的同学来参加班级建设活动需要消耗b[i]的活跃值. 每项活动都需要某些学生在场才能够进行,若其中有任意一个学生没有被邀请,这项活动就没有办法进行. 班级建设的活

全局最小割 学习总结

全局最小割的意思是在一个无向图中任取S和T,求最小割的最小值 还有一种描述是删掉无向图中的边使得其不连通的最小代价 当然,这种题目可以用分治+最小割来求解 但是时间复杂度大约在O(n^4)左右 有一种更好的求解方法可以在O(n^3)的时间复杂度内求解 做法是这样的: 首先对于图中任意两点S->T 要么S和T不在一个集合里时是答案,答案显然是S和T的最小割 否则S和T在一个集合里,我们可以将S和T缩成一个点,不难证明这样是等效的 我们模拟这个过程,每次任取S和T跑最小割,时间复杂度大概跟分治+最小

hdoj 3657 Game 【最小割 方格填数加强版】

Game Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1076    Accepted Submission(s): 456 Problem Description onmylove has invented a game on n × m grids. There is one positive integer on each g

[BZOJ 3774] 最优选择 【最小割】

题目链接:BZOJ - 3774 题目分析 此题与“文理分科”那道题目有些类似.都是使用最小割来求解,先加上可能获得的权值,在减掉必须舍弃的权值(最小割). 文理分科是规定每个人和 S 连就是选文,和 T 连就是选理.然后如果一个人和相邻的人都全文就会获得一个权值,那么我们就为这个权值建一个点,让这个点与必须同时选文的5个人连 INF 边.这样只要这 5 个人中有一个人选了理,就必须舍弃这个权值了. 再回到这道题目,这道题获得权值的条件是这个点被控制或这个点相邻的 4 个点都被控制. 这个“或”

【bzoj4177】Mike的农场 网络流最小割

题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元,每只羊可以卖b[i]元,为了防止牛羊之间相互影响,Mike找到了m条规律,每条规律给出一个三元组(i, j, k)表示如果第i个围栏和第j个围栏养的是不同的动物,那么Mike就需要花费k的代价请人帮忙处理牛羊之间的影响.不过同时Mike也发现k条特殊的规则(S, a, b),表示如果S中所有牲畜

HDU 1565 && HDU 1569 方格取数 (网络流之最小割)

题目地址:HDU 1565       HDU 1569 刚开始接触最小割,就已经感受到了最小割的博大精深... 这建图思路倒是好想..因为好多这种关于不相邻的这种网络流都是基本都是这样建图.但是感觉毫无道理可言...看了题解后才明白这样做的意义. 下面是题解中的说法. 大概是这样分析的,题义是要我们求在一个方格内取出N个点,使得这N个独立的(不相邻)点集的和最大.我们可以将问题转化为最小割来求解.首先,我们将方格进行黑白相间的染色,然后再将任意一种颜色(黑色)作为源点,一种颜色(白色)作为汇点

网络战争 [KD-Tree+最小割树]

题面 思路 首先吐槽一下: 这题是什么东西啊??出题人啊,故意拼题很有意思吗??还拼两个这么毒瘤的东西???? 10K代码了解一下???? 然后是正经东西 首先,本题可以理解为这样: 给定$n$个块,每个块有一个根,每个根只会主动连出去一条无向边,每次求两点最小割 那么,我们显然可以把每个块内的最小割树建立出来,同时把块的根之间的最小割树也建立出来 如果询问点在同一个块里面,显然可以直接最小割树处理 否则就是两边的点到块根的最小割和两个块根之间的最小割的最小值 所以,我们先对于所有的块根,建出K