/*
* TI DaVinci GPIO Support
*
* Copyright (c) 2006 David Brownell
* Copyright (c) 2007, MontaVista Software, Inc. <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/hardware/clock.h>
#include <asm/arch/irqs.h>
#include <asm/arch/hardware.h>
#include <asm/arch/gpio.h>
#include <asm/arch/cpu.h>
#include <asm/mach/irq.h>
/*
该文件实现了gpio的各种应用功能和向内核注册gpio的中断例程等功能。
用户的驱动程序可调用gpio_request和gpio_free使用或释放该gpio,
可以调用gpio_direction_input和gpio_direction_output函数设置gpio输入输出方向,
调用gpio_get_value和gpio_set_value获取设置值。
*/
static
DEFINE_SPINLOCK(gpio_lock);
/* 总共有DAVINCI_N_GPIO(71)个gpio引脚,故使用相应多的bit来记录这些引脚的使用状态 */
static
DECLARE_BITMAP(gpio_in_use, DAVINCI_N_GPIO);
/*
申请一个gpio,其实就是检查该gpio是否空闲,如果空闲就可以使用并将该gpio相应的bit置位
(在gpio_in_use中)。
*/
int
gpio_request(unsigned gpio, const
char *tag)
{
if
(gpio >= DAVINCI_N_GPIO)
return
-EINVAL;
if
(test_and_set_bit(gpio, gpio_in_use))
return
-EBUSY;
return
0;
}
EXPORT_SYMBOL(gpio_request);
/*
释放一个gpio,其实就是清除gpio相应的控制bit位(在gpio_in_use中)。
*/
void
gpio_free(unsigned gpio)
{
if
(gpio >= DAVINCI_N_GPIO)
return ;
clear_bit(gpio, gpio_in_use);
}
EXPORT_SYMBOL(gpio_free);
/* 获得gpio_controller结构体指针,gpio_controller结构体是gpio的核心控制单元,里面包含
gpio的设置和数据寄存器。该结构体和__gpio_to_controller函数在/include/asm-arm/
arch-davinci/gpio.h中定义,具体如下:
struct gpio_controller {
u32 dir;
u32 out_data;
u32 set_data;
u32 clr_data;
u32 in_data;
u32 set_rising;
u32 clr_rising;
u32 set_falling;
u32 clr_falling;
u32 intstat;
};
static inline struct gpio_controller *__iomem
__gpio_to_controller(unsigned gpio)
{
void *__iomem ptr;
if (gpio >= DAVINCI_N_GPIO)
return NULL;
if (gpio < 32)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);
else if (gpio < 64)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);
else if (gpio < 96)
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);
else
ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);
return ptr;
}
由上面的定义和ti的SPRUE25.pdf手册可以看出,__gpio_to_controller函数返回的是
gpio_controller结构体到第一个成员dir的虚拟地址。获取了这个结构体指针后,
便可以控制相应的gpio了。dm644x共有71个gpio,
所以使用三个gpio_controller结构体控制,关于这个后面会由更详细的分析,
*/
/* create a non-inlined version */
static
struct gpio_controller *__iomem gpio2controller(unsigned gpio)
{
return
__gpio_to_controller(gpio);
}
/*
向某个gpio设置值,0或1。如果向gpio写1,则向set_data寄存器相应的位置1,如果写0,
则向clr_data寄存器相应的位置1.__gpio_mask函数在gpio.h中定义,定义如下,
static inline u32 __gpio_mask(unsigned gpio)
{
return 1 << (gpio % 32);
}
因为71个引脚由3个结构体控制,第一个控制前32个gpio,第二个控制次32个gpio,
最后一个控制剩余的7个gpio,故__gpio_mask函数的作用是找到在其相应控制结构体里的偏移数,
比如gpio34,那么其由第二个结构体控制,在这个机构体里的偏移是3(从0开始算,就是第二位)。
使用这个函数之前,必须确认该gpio设置成输出模式。
*/
/*
* Assuming the pin is muxed as a gpio output, set its output value.
*/
void
__gpio_set(unsigned gpio, int
value)
{
struct
gpio_controller *__iomem g = gpio2controller(gpio);
// 设置gpio的值
__raw_writel(__gpio_mask(gpio), value ? &g->set_data : &g->clr_data);
}
EXPORT_SYMBOL(__gpio_set);
/*
通过读取in_data寄存器相应该gpio的位来读取gpio的值。
使用这个函数之前,必须确认该gpio设置成输入模式,否则获得到值不可预料。
*/
/*
* Read the pin‘s value (works even if it‘s set up as output);
* returns zero/nonzero.
*
* Note that changes are synched to the GPIO clock, so reading values back
* right after you‘ve set them may give old values.
*/
int
__gpio_get(unsigned gpio)
{
struct
gpio_controller *__iomem g = gpio2controller(gpio);
/* 读取gpio的值,!!的目的是使得返回的值为0或1.*/
return
!!(__gpio_mask(gpio) & __raw_readl(&g->in_data));
} }
EXPORT_SYMBOL(__gpio_get);
/*
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。
该函数是设置成输入,故设置dir寄存器为1.
正如应为所说的,必须确认该引脚是作为gpio功能,而不是某个模块到功能,比如spi。通过PINMUX0
和PINMUX1两个寄存器来设置。
*/
/*--------------------------------------------------------------------------*/
/*
* board setup code *MUST* set PINMUX0 and PINMUX1 as
* needed, and enable the GPIO clock.
*/
int
gpio_direction_input(unsigned gpio)
{
struct
gpio_controller *__iomem g = gpio2controller(gpio);
u32 temp;
u32 mask;
if
(!g)
return
-EINVAL;
spin_lock(&gpio_lock);
mask = __gpio_mask(gpio);
temp = __raw_readl(&g->dir);
temp |= mask; // 设置成1
__raw_writel(temp, &g->dir); // 设置该gpio为输入
spin_unlock(&gpio_lock);
return
0;
}
EXPORT_SYMBOL(gpio_direction_input);
/*
通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。
该函数是设置成输出,故设置dir寄存器为0.
value参数用于选择gpio设置成输出后该gpio输出的值。
*/
int
gpio_direction_output(unsigned gpio, int
value)
{
struct
gpio_controller *__iomem g = gpio2controller(gpio);
u32 temp;
u32 mask;
if
(!g)
return
-EINVAL;
spin_lock(&gpio_lock);
mask = __gpio_mask(gpio);
temp = __raw_readl(&g->dir);
temp &= ~mask; // 设置成0
//设置该gpio输出值
__raw_writel(mask, value ? &g->set_data : &g->clr_data);
__raw_writel(temp, &g->dir); // 设置gpio为输出
spin_unlock(&gpio_lock);
return
0;
}
EXPORT_SYMBOL(gpio_direction_output);
/*
向gpio设置值,0或1。
*/
void
gpio_set_value(unsigned gpio, int
value)
{
if
(__builtin_constant_p(value)) {
struct
gpio_controller *__iomem g;
u32 mask;
if
(gpio >= DAVINCI_N_GPIO)
__error_inval_gpio();
g = __gpio_to_controller(gpio);
mask = __gpio_mask(gpio);
if
(value)
__raw_writel(mask, &g->set_data); // 该gpio输出高
else
__raw_writel(mask, &g->clr_data); // 该gpio输出低
return ;
}
__gpio_set(gpio, value);
}
EXPORT_SYMBOL(gpio_set_value);
/*
读取gpio的值,0或1.
*/
int
gpio_get_value(unsigned gpio)
{
struct
gpio_controller *__iomem g;
if
(!__builtin_constant_p(gpio)) /* 判断该gpio值是否为编译时常数,如果是常数,
函数返回 1,否则返回 0 */
return
__gpio_get(gpio);
if
(gpio >= DAVINCI_N_GPIO)
return
__error_inval_gpio();
g = __gpio_to_controller(gpio);
// 读取该gpio的值
return
!!(__gpio_mask(gpio) & __raw_readl(&g->in_data));
}
EXPORT_SYMBOL(gpio_get_value);
/*
* We expect irqs will normally be set up as input pins, but they can also be
* used as output pins ... which is convenient for testing.
*
* NOTE: GPIO0..GPIO7 also have direct INTC hookups, which work in addition
* to their GPIOBNK0 irq (but with a bit less overhead). But we don‘t have
* a good way to hook those up ...
*
* All those INTC hookups (GPIO0..GPIO7 plus five IRQ banks) can also
* serve as EDMA event triggers.
*/
/*
禁止相应该irq的gpio的中断。每个gpio都可以作为中断的来源,其中gpio0-gpio7是独立的中断来源,
也就是分配独立的中断号,其他gpio则共用5个GPIOBNK中断线。其优先级可以在board-evm.c
中设置(已经介绍过)。在dm644x平台上,中断是电平边缘触发的,禁止中断其实就是既不设置
上升沿触发,也不设置下降沿触发。
*/
static
void gpio_irq_disable(unsigned irq)
{
struct
gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq));
__raw_writel(mask, &g->clr_falling); // 清除下降沿触发
__raw_writel(mask, &g->clr_rising); // 清除上升沿触发
}
/*
中断使能。
在dm644x平台上,中断是电平边缘触发的,其实就是设置为上升沿或下降沿中断。
*/
static
void gpio_irq_enable(unsigned irq)
{
struct
gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq));
// 如果先前为下降沿中断,则使能为下降沿中断
if
(irq_desc[irq].status & IRQT_FALLING)
__raw_writel(mask, &g->set_falling);
// 如果先前为上升沿中断,则使能为上升沿中断
if
(irq_desc[irq].status & IRQT_RISING)
__raw_writel(mask, &g->set_rising);
}
/*
设置中断类型。
在dm644x平台上,中断有上升沿和下降沿两种触发方式。
*/
static
int gpio_irq_type(unsigned irq, unsigned trigger)
{
struct
gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = __gpio_mask(irq_to_gpio(irq));
if
(trigger & ~(IRQT_FALLING | IRQT_RISING))
return
-EINVAL;
irq_desc[irq].status &= ~IRQT_BOTHEDGE;
irq_desc[irq].status |= trigger;
__raw_writel(mask, (trigger & IRQT_FALLING)
? &g->set_falling : &g->clr_falling); // 设置为下降沿触发
__raw_writel(mask, (trigger & IRQT_RISING)
? &g->set_rising : &g->clr_rising); // 设置为上升沿触发
return
0;
}
/*
该结构体用于注册到所有irq的中断描述结构体中(struct irqdesc),
而所有中断描述结构体定义成一个全局数组irq_desc 。
*/
static
struct irqchip gpio_irqchip = {
.unmask = gpio_irq_enable, /* 用于使能中断,
在enable_irq()等内核函数中会用到。*/
.mask = gpio_irq_disable, /* 用于禁止中断,
在disable_irq()等内核函数中会用到。*/
.type = gpio_irq_type, /* 用于设置中断类型,
在set_irq_type()内核函数中会用到。*/
};
/*
该函数将在下面的davinci_gpio_irq_setup中使用,将被注册到五个gpio bank中断的
irq_desc结构中,目的是处理所有级联的gpio中断。所谓级联的中断, 就是指有n个中断
共用同一个中断线。
在dm644x平台中,除了gpio0-gpio7外,其他63个gpio都共用五个gpiobank中断线,在这里,
gpio0-gpio7也被注册到gpiobank中断线,但实际上并不会使用,因为它们拥有自己的
中断线。其中,gpio0-gpio15共用IRQ_GPIOBNK0(56)中断线,gpio16-gpio31共用
IRQ_GPIOBNK1(57)中断线,gpio32-gpio47共用IRQ_GPIOBNK2(58)中断线,
gpio48-gpio63共用IRQ_GPIOBNK4(59)中断线,gpio64-gpio70共用
IRQ_GPIOBNK5(60)中断线,
因为寄存器是32位的,所以实际上只有三组寄存器,第一组包含bank0和bank1,
也就是gpio0-gpio31,第二组包含bank2和bank3,也就是gpio32-gpio63,
第三组包含bank4和bank5,也就是gpio64-gpio70,剩余了25个位没有使用。
*/
static
void
gpio_irq_handler(unsigned irq, struct
irqdesc *desc, struct
pt_regs *regs)
{
struct
gpio_controller *__iomem g = get_irq_chipdata(irq);
u32 mask = 0xffff;
/* we only care about one bank */
// 如果bank中断线是寄数,则说明该中断的中断状态位在INTSTATn寄存器的高16位
if
(irq & 1)
mask <<= 16;
/* temporarily mask (level sensitive) parent IRQ */
desc->chip->ack(irq); // 该ack函数会在arch/arm/mach-davinci/irq.c中注册。
while
(1) {
u32 status;
struct
irqdesc *gpio;
int
n;
int
res;
/* ack any irqs */
/*gpio中断发生后,硬件会在INTSTATn寄存器中置位相应位,
以备程序查询,确定是哪个gpio*/
status = __raw_readl(&g->intstat) & mask;
if
(!status)
break ;
__raw_writel(status, &g->intstat); // 向该位写1清除
if
(irq & 1)
status >>= 16;
/* now demux them to the right lowlevel handler */
// 从下面的davinci_gpio_irq_setup函数可以看出来以下程序的运作。
n = ( int )get_irq_data(irq); // 获取该bank对应的第一个gpio号
gpio = &irq_desc[n]; // 获取该bank第一个gpio号对应的中断描述符
while
(status) { // 该bank可能有多个gpio发生了中断
res = ffs(status); // 获取第一个发生了中断的位(1-32)
n += res; /* 获得该gpio的中断线(系统实际上只有64(0-63)个中断线,
但那些共用的gpio的中断也有自己的断描述符和中断线(从64开始),
仅仅是为了管理,不能通过request_irq()函数来申请。*/
gpio += res; // 获得该gpio的中断描述符
/* 调用下面注册的do_simple_IRQ例程
其又会调用用户通过request_irq()
注册的中断例程
*/
desc_handle_irq(n - 1, gpio - 1, regs);
status >>= res;
}
}
desc->chip->unmask(irq); // 打开该irq中断线
/* now it may re-trigger */
}
/*
* NOTE: for suspend/resume, probably best to make a sysdev (and class)
* with its suspend/resume calls hooking into the results of the set_wake()
* calls ... so if no gpios are wakeup events the clock can be disabled,
* with outputs left at previously set levels, and so that VDD3P3V.IOPWDN0
* can be set appropriately for GPIOV33 pins.
*/
/*
注册gpio中断例程到内核中,并初始化了一些寄存器。
该函数将会被board_evm.c(其浅析已经发表)中的evm_init()函数调用。具体调用过程如下:
start_kernel()-->setup_arch()-->init_machine = mdesc->init_machine
(init_machine是个全局函数指针变量,其指向的就是已经注册到机器描述符里evm_init());
调用函数指针init_machine()的例程是customize_machine(),其定义为
arch_initcall(customize_machine),所以,接下来的调用过程是:
start_kernel()-->do_basic_setup()-->do_initcalls()-->customize_machine()-->
init_machine()(也就是evm_init())-->davinci_gpio_irq_setup。
从上可以看出经历了两个过程,才调用davinci_gpio_irq_setup例程来初始化gpio中断。
*/
int
__init davinci_gpio_irq_setup( void )
{
unsigned gpio, irq, bank, banks;
struct
clk *clk;
clk = clk_get(NULL, "gpio" ); // 获取时钟
if
(IS_ERR(clk)) {
printk(KERN_ERR "Error %ld getting gpio clock?\n" ,
PTR_ERR(clk));
return
0;
}
clk_enable(clk); // 使能gpio时钟并打开该模块电源
for
(gpio = 0, irq = gpio_to_irq(0), bank = (cpu_is_davinci_dm355() ?
IRQ_DM355_GPIOBNK0 : (cpu_is_davinci_dm6467() ?
IRQ_DM646X_GPIOBNK0 : IRQ_GPIOBNK0)); // dm644x的IRQ_GPIOBNK0(56)
gpio < DAVINCI_N_GPIO; bank++) { // dm644x的DAVINCI_N_GPIO(71)
struct
gpio_controller *__iomem g = gpio2controller(gpio);
unsigned i;
// 关该bank所有gpio的中断
__raw_writel(~0, &g->clr_falling);
__raw_writel(~0, &g->clr_rising);
/* set up all irqs in this bank */
// 同一个bank的所有gpio共用一个中断例程gpio_irq_handler
set_irq_chained_handler(bank, gpio_irq_handler);
set_irq_chipdata(bank, g);
set_irq_data(bank, ( void
*)irq);
for
(i = 0; i < 16 && gpio < DAVINCI_N_GPIO;
i++, irq++, gpio++) {
set_irq_chip(irq, &gpio_irqchip); /* 注册用于gpio中断禁止、设能
和类型选择的回调例程 */
set_irq_chipdata(irq, g); // 保存控制结构体(寄存器)的地址
set_irq_handler(irq, do_simple_IRQ); /* 为每个gpio中断设置同一个中
断例程do_simple_IRQ*/
set_irq_flags(irq, IRQF_VALID); // fiq中断有效
}
}
/*
一个共用bank中断线的gpio中断发生后的大致的流程是:
--> gpio_irq_handler --> do_simple_IRQ --> __do_irq -->
action->handler(用户使用request_irq()注册的中断例程)
*/
/* BINTEN -- per-bank interrupt enable. genirq would also let these
* bits be set/cleared dynamically.
*/
if
(cpu_is_davinci_dm355())
banks = 0x3f;
else
banks = 0x1f;
// 向BINTEN寄存器写入0x1f(共5个位,每个位控制1个bank),打开所有的bank中断
__raw_writel(banks, ( void
*__iomem)
IO_ADDRESS(DAVINCI_GPIO_BASE + 0x08));
printk(KERN_INFO "DaVinci: %d gpio irqs\n" , irq - gpio_to_irq(0));
return
0;
}
gpio.h
/*
* TI DaVinci GPIO Support
*
* Copyright (c) 2006 David Brownell
* Copyright (c) 2007, MontaVista Software, Inc. <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#ifndef __DAVINCI_GPIO_H
#define __DAVINCI_GPIO_H
/*
* basic gpio routines
*
* board-specific init should be done by arch/.../.../board-XXX.c (maybe
* initializing banks together) rather than boot loaders; kexec() won‘t
* go through boot loaders.
*
* the gpio clock will be turned on when gpios are used, and you may also
* need to pay attention to PINMUX0 and PINMUX1 to be sure those pins are
* used as gpios, not with other peripherals.
*
* GPIOs are numbered 0..(DAVINCI_N_GPIO-1). For documentation, and maybe
* for later updates, code should write GPIO(N) or:
* - GPIOV18(N) for 1.8V pins, N in 0..53; same as GPIO(0)..GPIO(53)
* - GPIOV33(N) for 3.3V pins, N in 0..17; same as GPIO(54)..GPIO(70)
*
* For GPIO IRQs use gpio_to_irq(GPIO(N)) or gpio_to_irq(GPIOV33(N)) etc
* for now, that‘s != GPIO(N)
*/
#define GPIO(X) (X) /* 0 <= X <= 70 */
#define GPIOV18(X) (X) /* 1.8V i/o; 0 <= X <= 53 */
#define GPIOV33(X) ((X)+54) /* 3.3V i/o; 0 <= X <= 17 */
/*
寄存器都是32位到,每位对应一个gpio。
*/
struct
gpio_controller {
u32 dir; // gpio方向设置寄存器
u32 out_data; // gpio设置为输出时,表示输出状态(0或1)
u32 set_data; // gpio设置为输出时,用于输出高电平
u32 clr_data; // gpio设置为输出时,用于输出低电平
u32 in_data; // gpio设置为输入时,用于读取输入值
u32 set_rising; // gpio中断上升沿触发设置
u32 clr_rising; // gpio中断上升沿触发清除
u32 set_falling; // gpio中断下降沿触发设置
u32 clr_falling; // gpio中断下降沿触发清除
u32 intstat; // gpio中断状态位,由硬件设置,可读取,写1时清除。
};
/* The __gpio_to_controller() and __gpio_mask() functions inline to constants
* with constant parameters; or in outlined code they execute at runtime.
*
* You‘d access the controller directly when reading or writing more than
* one gpio value at a time, and to support wired logic where the value
* being driven by the cpu need not match the value read back.
*
* These are NOT part of the cross-platform GPIO interface
*/
static
inline struct
gpio_controller *__iomem
__gpio_to_controller(unsigned gpio)
{
void
*__iomem ptr;
if
(gpio >= DAVINCI_N_GPIO)
return
NULL;
if
(gpio < 32)
ptr = ( void
*__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);
else
if (gpio < 64)
ptr = ( void
*__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);
else
if (gpio < 96)
ptr = ( void
*__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);
else
ptr = ( void
*__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);
return
ptr;
}
static
inline u32 __gpio_mask(unsigned gpio)
{
return
1 << (gpio % 32);
}
/* The get/set/clear functions will inline when called with constant
* parameters, for low-overhead bitbanging. Illegal constant parameters
* cause link-time errors.
*
* Otherwise, calls with variable parameters use outlined functions.
*/
extern
int __error_inval_gpio( void );
extern
void __gpio_set(unsigned gpio, int
value);
extern
int __gpio_get(unsigned gpio);
/* Returns zero or nonzero; works for gpios configured as inputs OR
* as outputs.
*
* NOTE: changes in reported values are synchronized to the GPIO clock.
* This is most easily seen after calling gpio_set_value() and then immediatly
* gpio_get_value(), where the gpio_get_value() would return the old value
* until the GPIO clock ticks and the new value gets latched.
*/
extern
int gpio_get_value(unsigned gpio);
extern
void gpio_set_value(unsigned gpio, int
value);
/* powerup default direction is IN */
extern
int gpio_direction_input(unsigned gpio);
extern
int gpio_direction_output(unsigned gpio, int
value);
#include <asm-generic/gpio.h> /* cansleep wrappers */
extern
int gpio_request(unsigned gpio, const
char *tag);
extern
void gpio_free(unsigned gpio);
static
inline int
gpio_to_irq(unsigned gpio)
{
return
DAVINCI_N_AINTC_IRQ + gpio;
}
static
inline int
irq_to_gpio(unsigned irq)
{
return
irq - DAVINCI_N_AINTC_IRQ;
}
#endif /* __DAVINCI_GPIO_H */
|