POJ3659 Cell Phone Network(树上最小支配集:树型DP)

题目求一棵树的最小支配数。

支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻。

听说即使是二分图,最小支配集的求解也是还没多项式算法的。而树上求最小支配集树型DP就OK了。

树上的每个结点作为其子树的根可以有三个状态:

  1. 不属于支配集且还没被支配
  2. 不属于支配集但被其孩子支配
  3. 属于支配集

那么就是用dp[u][1\2\3]来表示动归的状态。

123转移该怎么转移就怎么转移。。最后的结果就是min(dp[root][2],dp[root][3])。

要注意的是对于有些结点前2个状态可能是不存在的,比如叶子结点不存在第2个状态、存在孩子是叶子结点的结点不存在第1个状态,这些不存在的状态要在转移的时候处理。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 #define INF 123456
 6 #define MAXN 111111
 7 struct Edge{
 8     int u,v,next;
 9 }edge[MAXN<<1];
10 int NE,head[MAXN];
11 void addEdge(int u,int v){
12     edge[NE].u=u; edge[NE].v=v; edge[NE].next=head[u];
13     head[u]=NE++;
14 }
15 int d[MAXN][3];
16 int dp(int u,int k,int fa){
17     if(d[u][k]!=-1) return d[u][k];
18     int res=0,diff=INF; bool flag=0,isLeaf=1;
19     for(int i=head[u]; i!=-1; i=edge[i].next){
20         int v=edge[i].v;
21         if(v==fa) continue;
22         isLeaf=0;
23         if(k==0){
24             if(dp(v,1,u)==INF) return d[u][k]=INF;
25             res+=dp(v,1,u);
26         }else if(k==1){
27             if(dp(v,2,u)<=dp(v,1,u)){
28                 res+=dp(v,2,u);
29                 flag=1;
30             }else{
31                 if(dp(v,1,u)==INF) return d[u][k]=INF;
32                 res+=dp(v,1,u);
33                 diff=min(diff,dp(v,2,u)-dp(v,1,u));
34             }
35         }else{
36             res+=min(min(dp(v,0,u),dp(v,1,u)),dp(v,2,u));
37         }
38     }
39     if(k==1 && isLeaf) return d[u][k]=INF;
40     if(k==1 && !flag) res+=diff;
41     return d[u][k]=res+(k==2);
42 }
43 int main(){
44     int n,a,b;
45     scanf("%d",&n);
46     NE=0;
47     memset(head,-1,sizeof(head));
48     for(int i=1; i<n; ++i){
49         scanf("%d%d",&a,&b);
50         addEdge(a,b); addEdge(b,a);
51     }
52     memset(d,-1,sizeof(head));
53     printf("%d",min(dp(1,1,0),dp(1,2,0)));
54     return 0;
55 }
时间: 2024-10-10 18:28:09

POJ3659 Cell Phone Network(树上最小支配集:树型DP)的相关文章

【POJ3659】【USACO 2008 Jan Gold】 3.Cell Phone Network 树上最小支配集/贪心 两种做法

题意:求树上最小支配集 最小支配集:点集,即每个点可以"支配"到相邻点,求最少点数可以使所有点被支配. 图上的最小支配集是NP的,但是树上的可以DP做,是O(n)的. 暴力做就好了, f[i]表示此 点被选时的子树全支配的最小代价 g[i]表示其父亲节 点被选时的子树全支配的最小代价 h[i]表示其某子节 点被选时的子树全支配的最小代价 然后暴力转移. (v是子节点) f[x]=∑(min(f[v],min(g[v],h[v])))+1; g[x]=∑(min(f[v],h[v]));

poj3659 Cell Phone Network(最小支配集-树形dp)

题目链接:点击打开链接 题目描述:给定一棵树,从中选取尽量少的点使每个点要么被选中,要么和被选中的点直接相连? 解题思路:树上的最小支配集,树形dp dp[i][0]:选中i作为支配集 dp[i][1]:不选i作为支配集,但其子节点覆盖了i dp[i][2]:不选i作为支配集,而且其子节点没有覆盖i 代码: #pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include &l

POJ3659 Cell Phone Network【最小支配集】【贪心】

Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5735Accepted: 2053 Description Farmer John has decided to give each of his cows a cell phone in hopes to encourage their social interaction. This, however, requires him to

POJ 3659 Cell Phone Network(树的最小支配集)(贪心)

Cell Phone Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6781   Accepted: 2429 Description Farmer John has decided to give each of his cows a cell phone in hopes to encourage their social interaction. This, however, requires hi

树的问题小结(最小生成树、次小生成树、最小树形图、LCA、最小支配集、最小点覆盖、最大独立集)

树的定义:连通无回路的无向图是一棵树. 有关树的问题: 1.最小生成树. 2.次小生成树. 3.有向图的最小树形图. 4.LCA(树上两点的最近公共祖先). 5.树的最小支配集.最小点覆盖.最大独立集. 一.最小生成树 解决的问题是:求无向图中边权值之和最小的生成树. 算法有Kruskal和Prim. Kruskal使用前向星和并查集实现,可以存储重边(平行边),时间复杂度是O(m log m  +  m),m是边的数量. Prim使用邻接矩阵建图,不可以存储重边(平行边),如果出现重边,存储的

贪心法求树的最小支配集,最小点覆盖,最大独立集

定义: 最小支配集:对于图G = (V, E) 来说,最小支配集指的是从 V 中取尽量少的点组成一个集合, 使得 V 中剩余的点都与取出来的点有边相连.也就是说,设 V' 是图的一个支配集,则对于图中的任意一个顶点 u ,要么属于集合 V', 要么与 V' 中的顶点相邻. 在 V' 中除去任何元素后 V' 不再是支配集, 则支配集 V' 是极小支配集.称G 的所有支配集中顶点个数最少的支配集为最小支配集,最小支配集中的顶点个数称为支配数. 最小点覆盖:对于图G = (V, E) 来说,最小点覆盖

树的最小支配集 最小点覆盖 与 最大独立集 (图论)

做 战略游戏 这道题的时候看到了这个东西,于是就来这里写了一下. 首先看一下三者的定义: 定义1 对于图G=(V,E)来说,最小支配集指的是从V中取尽量少的点组成一个集合,使得对于V中剩余的点都与取出来的点有边相连.也就是说,设V‘是图G的一个支配集,则对于图中的任意一个顶点u,要么属于集合V’,要么与V‘中的顶点相邻.在V’中出去任何元素后V‘不再是支配集,则支配集是极小支配集.称G的所有支配集中顶点个数最少的支配集为最小支配集,最小支配集中顶点的个数称为支配数. 定义2 对于图G=(V,E)

树形DP 树的最小支配集,最小点覆盖与最大独立集

最小支配集: 从V中选取尽量少的点组成一个集合,让V中剩余的点都与取出来的点有边相连. (点) 最小点覆盖: 从V中选取尽量少的点组成一个集合V1,让所有边(u,v)中要么u属于V1,要么v属于V1 (边) 最大独立集: 从V中选取尽量多的点组成一个集合,让这些点中间没有边项链,也就是说对于任何一条边,u,v不能同时属于集合V1. 1.贪心算法 首先选取一个点为根节点,求出所有节点对应的DFS序列,按照所得序列反向进行贪心,这样保证对于每个点来说,当子树都被处理过之后才会处理该节点 int p[

树的最小支配集,最小点覆盖,最大独立集两种算法

1.基本概念 对图G=<V,E>, 最小支配集:从V中取尽量少的点组成一个集合,使得V中剩余的点都与取出来的点有边相连 最小点覆盖:从V中取尽量少的点组成一个集合,使得E中所有边都与取出来的点相连 最大独立集:从V中取尽量多的点组成一个集合,使得这些点之间没有边相连 2.贪心法求树的最小支配集,最小点覆盖,最大独立集模板 基本算法: 以最小支配集为例,首先选择一点为根,按照深度优先遍历得到遍历序列,按照所得序列的反向序列的顺序进行贪心,对于一个既不属于支配集也不与支配集中的点相连的点来说,如果