poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

The Bottom of a Graph

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 9641   Accepted: 4008

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in Gand we say that vn+1 is reachable from v1, writing (v1→vn+1)
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

定义:点v是汇点须满足 --- 对图中任意点u,若v可以到达u则必有u到v的路径;若v不可以到达u,则u到v的路径可有可无。
题意:在n个点m条边的有向图里面,问有多少个点是汇点。
分析:首先若SCC里面有一个点不是汇点,那么它们全不是汇点,反之也如此。这也就意味着一个SCC里面的点要么全是,要么全不是。在求出SCC并缩点后,任一个编号为A的SCC若存在指向编号为B的SCC的边,那么它里面所有点必不是汇点(因为编号为B的SCC不可能存在指向编号为A的SCC的边)。若编号为A的SCC没有到达其他SCC的路径,那么该SCC里面所有点必是汇点。因此判断的关键在于SCC的出度是否为0.
思路:先用tarjan求出所有SCC,然后缩点后找出所有出度为0的SCC,并用数字存储点,升序排列后输出。
#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<algorithm>
#define MAX 21000
#define INF 0x3f3f3f
using namespace std;
int cost[MAX];
int low[MAX],dfn[MAX];
int head[MAX],instack[MAX];
int ans,n,m;
int sccno[MAX],clock;//sccno用来记录当前点属于哪个scc,
int scccnt;//记录总共有多少个scc
stack<int>s;
vector<int>newmap[MAX];//scc缩点之后储存新图
vector<int>scc[MAX];//用来记录scc中的点
int out[MAX];//记录scc的入度
int ant[MAX];
struct node
{
    int beg,end,next;
}edge[MAX];
void init()
{
    memset(head,-1,sizeof(head));
    ans=0;
}
void add(int u,int v)
{
    edge[ans].beg=u;
    edge[ans].end=v;
    edge[ans].next=head[u];
    head[u]=ans++;
}
void getmap()
{
    int i,j,a,b;
    for(i=1;i<=m;i++)
    {
        scanf("%d%d",&a,&b);
        add(a,b);
    }
}
void tarjan(int u)
{
    int v,i,j;
    low[u]=dfn[u]=++clock;
    s.push(u);
    instack[u]=1;
    for(i=head[u];i!=-1;i=edge[i].next)
    {
        v=edge[i].end;
        if(!dfn[v])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else if(instack[v])
            low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u])
    {
        scccnt++;
        scc[scccnt].clear();//??
        while(1)
        {
            v=s.top();
            s.pop();
            instack[v]=0;
            sccno[v]=scccnt;
            scc[scccnt].push_back(v);
            if(v==u)
            break;
        }
    }
}
void find(int l,int r)
{
    memset(low,0,sizeof(low));
    memset(dfn,0,sizeof(dfn));
    memset(sccno,0,sizeof(sccno));
    memset(instack,0,sizeof(instack));
    clock=scccnt=0;
    for(int i=l;i<=r;i++)
    {
        if(!dfn[i])
            tarjan(i);
    }
}
void suodian()
{
    int i,j;
    for(i=1;i<=scccnt;i++)
    {
        newmap[i].clear();
       out[i]=0;
    }
    for(i=0;i<ans;i++)//遍历所有的边
    {
        int u=sccno[edge[i].beg];//当前边的起点
        int v=sccno[edge[i].end];//当前边的终点
        if(u!=v)//因为sccno中记录的是当前点属于哪个scc,所以u!=v证明不在同一个scc但是由一条边相连,
        {       //证明这两个scc联通
            newmap[u].push_back(v);//将scc中的点储存下来  ??
            out[u]++;//两个scc联通 则入度加一,
        }
    }
}
void solve()
{
	int i,j,k=0;
	for(i=1;i<=scccnt;i++)
	{
		if(out[i]==0)
		{
			for(j=0;j<scc[i].size();j++)
			    ant[k++]=scc[i][j];
		}
	}
	sort(ant,ant+k);
	for(i=0;i<k;i++)
	{
        if(i<k-1)
		printf("%d ",ant[i]);
        else
        printf("%d",ant[i]);
	}
	printf("\n");
}
int main()
{
    int j,i;
    while(scanf("%d",&n),n)
    {
    	scanf("%d",&m);

        init();
        getmap();
        find(1,n);
        suodian();
        solve();
    }
    return 0;
}

  

时间: 2024-12-21 07:10:01

poj 2553 The Bottom of a Graph【强连通分量求汇点个数】的相关文章

POJ 2553 The Bottom of a Graph (强连通分量)

题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假设这个分量还连接其它分量的话,则肯定都不是sink.所以仅仅须要找出度为0的强连通分量就可以. 代码例如以下: #include <iostream> #include <string.h> #include <math.h> #include <queue>

POJ 2553 The Bottom of a Graph(Tarjan,强连通分量)

解题思路: 本题要求 求出所有满足"自己可达的顶点都能到达自己"的顶点个数,并从小到大输出. 利用Tarjan算法求出强连通分量,统计每个强连通分量的出度,出度为0的强连通分量内的顶点即为所求顶点. #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <cmath

POJ 2553 The Bottom of a Graph(强连通分量)

POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <stack> using namespace std; const int N = 5005; int n, m; vector&l

poj 2553 The Bottom of a Graph 【强连通图中出度为0点】

题目:poj 2553 The Bottom of a Graph 题意:大概题意是给出一个有向图,求强连通缩点以后出度为0的点. 分析:入门题目,先强连通缩点,然后表示出度为0的,枚举输出即可. #include <cstdio> #include <vector> #include <iostream> #include <stack> #include <cstring> using namespace std; const int N =

POJ 2553 The Bottom of a Graph TarJan算法题解

本题分两步: 1 使用Tarjan算法求所有最大子强连通图,并且标志出来 2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的所有点,都是解集. Tarjan算法就是模板算法了. 这里使用一个数组和一个标识号,就可以记录这个顶点是属于哪个子强连通图的了. 然后使用DFS递归搜索所有点及其边,如果有边的另一个顶点不属于本子强连通图,那么就说明有出射的边. 有难度的题目: #include <stdio.h> #include <stdlib.h> #include &l

[tarjan] poj 2553 The Bottom of a Graph

题目链接: http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8899   Accepted: 3686 Description We will use the following (standard) definitions from graph theory. Let V be a nonempty and fini

POJ 2553 The Bottom of a Graph

The Bottom of a Graph Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 255364-bit integer IO format: %lld      Java class name: Main We will use the following (standard) definitions from graph theory. Let V be

POJ 2553 The Bottom of a Graph 【scc tarjan】

图论之强连通复习开始- - 题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点 思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不在点集内,因为缩点后是DAG,无环,因此一定不能回到原来的点,所以找到出度为0的点即可 #include<cstdio> #include<string.h> #include<math.h> #include<algorithm> #include<io

【poj2553】The Bottom of a Graph(强连通分量缩点)

题目链接:http://poj.org/problem?id=2553 [题意] 给n个点m条边构成一幅图,求出所有的sink点并按顺序输出.sink点是指该点能到达的点反过来又能回到该点. [思路] 不难想象sink点一定是在强连通分量中,而且强连通分量缩点后出度为0,就可以说明该强连通分量内所有的点都是sink点. 之前wa了一发是因为写成了out[i],注意是从缩点构成的dag中找出度为0的点,而不是从原来的图中找. [ac代码] #include <cstdio> #include &