LCA 算法学习 (最近公共祖先)poj 1330

poj1330

在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,处理技巧就是在回溯到结点u的时候,u的子树已经遍历,这时候才把u结点放入合并集合中,这样u结点和所有u的子树中的结点的最近公共祖先就是u了,u和还未遍历的所有u的兄弟结点及子树中的最近公共祖先就是u的父亲结点。这样我们在对树深度遍历的时候就很自然的将树中的结点分成若干的集合,两个集合中的所属不同集合的任意一对顶点的公共祖先都是相同的,也就是说这两个集合的最近公共祖先只有一个。时间复杂度为O(n+q),n为节点,q为询问节点对数。

#include"stdio.h"
#include"string.h"
#include"vector"
using namespace std;
#define N 11000
const int inf=1<<20;
vector<int>g[N];
int s,t,n;
int f[N],pre[N],ans[N];
bool vis[N];
int findset(int x)
{
    if(x!=f[x])
        f[x]=findset(f[x]);
    return f[x];
}
int unionset(int a,int b)
{
    int x=findset(a);
    int y=findset(b);
    if(x==y)
        return x;
    f[y]=x;
    return x;
}
void lca(int u)
{
    int i,v;
    ans[u]=u;
    for(i=0;i<g[u].size();i++)
    {
        v=g[u][i];
        lca(v);
        int x=unionset(u,v);
        ans[x]=u;
    }
    vis[u]=1;
    if(u==s&&vis[t])
    {
        printf("%d\n",ans[findset(t)]);
        return ;
    }
    else if(u==t&&vis[s])
    {
        printf("%d\n",ans[findset(s)]);
        return ;
    }
}
int main()
{
    int i,u,v,T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(i=1;i<=n;i++)
        {
            pre[i]=-1;    //记录节点I的父节点
            f[i]=i;       //并查集记录根节点
            vis[i]=0;
            g[i].clear();
        }
        for(i=1;i<n;i++)
        {
            scanf("%d%d",&u,&v);
            g[u].push_back(v);
            pre[v]=u;
        }
        scanf("%d%d",&s,&t);
        for(i=1;i<=n;i++)
            if(pre[i]==-1)
                break;
        lca(i);
    }
    return 0;
}

LCA 算法学习 (最近公共祖先)poj 1330,布布扣,bubuko.com

时间: 2024-10-11 05:05:57

LCA 算法学习 (最近公共祖先)poj 1330的相关文章

[最近公共祖先] POJ 1330 Nearest Common Ancestors

Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27316   Accepted: 14052 Description A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:  In the figure, eac

[最近公共祖先] POJ 3728 The merchant

The merchant Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 4556   Accepted: 1576 Description There are N cities in a country, and there is one and only one simple path between each pair of cities. A merchant has chosen some paths and w

tarjan算法求最近公共祖先

tarjian算法 LCA: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们就是要求找到公共的节点中,深度尽量深的点.还可以表示成另一种说法,就是如果把树看成是一个图,这找到这两个点中的最短距离. LCA算法有在线算法也有离线算法,所谓的在线算法就是实时性的,而离线算法则是要求一次性读入所有的请求,然后在统一得处理.而在处理的过程中不一定是按照请求的输入顺序来处理的.说不定

【算法】树上公共祖先的Tarjan算法

最近公共祖先问题 树上两点的最近公共祖先问题(LCA - Least Common Ancestors) 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u和v的祖先且x的深度尽可能大.在这里,一个节点也可以是它自己的祖先. 例如,如图,在以A为根的树上 节点 8 和 9 的LCA为 4 节点 8 和 5 的LCA为 2 节点 8 和 3 的LCA为 1 在线算法与离线算法 区别就在于是同时处理询问后输出还是边询问边输出 在线算法是读入一组询问,查询一次后紧

LCA(最近公共祖先)——离线 Tarjan 算法

一.梳理概念 定义:对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 通俗地讲,最近公共祖先节点,就是两个节点在这棵树上深度最大的公共的祖先节点,即两个点在这棵树上距离最近的公共祖先节点. 提示:父亲节点也是祖先节点,节点本身也是它的祖先节点. 给出一棵树,如图所示: 由上面的定义可知:3和5的最近公共祖先为1,5和6的最近公共祖先为2,2和7的最近公共祖先为2, 6和7的最近公共祖先为4. 二.繁文缛节 注意注意注意!!!尚

最近公共祖先(三种算法)

最近研究了一下最近公共祖先算法,根据效率和实现方式不同可以分为基本算法.在线算法和离线算法.下面将结合hihocoder上的题目分别讲解这三种算法. 1.基本算法 对于最近公共祖先问题,最容易想到的算法就是从根开始遍历到两个查询的节点,然后记录下这两条路径,两条路径中距离根节点最远的节点就是所要求的公共祖先. 题目参见 #1062 : 最近公共祖先·一 附上AC代码,由于记录的方式采取的是儿子对应父亲,所以实现的时候有点小技巧,就是对第一个节点的路径进行标记,查找第二个节点的路径时一旦发现访问到

HDU 2586 How far away ?(LCA模板 近期公共祖先啊)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house

HDU 2586 How far away ?(LCA模板 最近公共祖先啊)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house

POJ 1330 LCA最近公共祖先 离线tarjan算法

题意要求一棵树上,两个点的最近公共祖先 即LCA 现学了一下LCA-Tarjan算法,还挺好理解的,这是个离线的算法,先把询问存贮起来,在一遍dfs过程中,找到了对应的询问点,即可输出 原理用了并查集和dfs染色,先dfs到底层开始往上回溯,边并查集合并 一边染色,这样只要询问的两个点均被染色了,就可以输出当前并查集的最高父亲一定是LCA,因为我是从底层层层往上DSU和染色的,要么没被染色,被染色之后,肯定就是当前节点是最近的 #include <iostream> #include <