psutil--跨平台的进程管理

原文地址:http://www.jianshu.com/p/64e265f663f6

Python处理Windows进程

psutil(Python system and process utilities)是一个跨平台的进程管理和系统工具的python库,
可以处理系统CPU,memory,disks,network等信息。主要用于系统资源的监控,分析,以及对进程
进行一定的管理。通过psutil可以实现如ps,top,lsof,netstat,ifconfig, who,df,kill,free,
nice,ionice,iostat,iotop,uptime,pidof,tty,taskset,pmap。在Linux,windows,OSX,freebsd
Sun Solaris等系统上工作,最新的版本python是要高于2.6(Python 2.4 Python2.5 可以用2.1.3版本)

系统相关的功能

CPU相关

psutil.cpu_times(precpu=False)
返回系统CPU运行时间的元组,时间为秒。

  • user

    • system
    • nice (UNIX)
    • iowait (Linux)
    • irq (Linux, FreeBSD)
    • softirq (Linux)
    • steal (Linux 2.6.11+)
    • guest (Linux 2.6.24+)
    • guest_nice (Linux 3.2.0+ )

psutil.cpu_percent(interval=None, percpu=False)
返回一个浮点书,代表当前cpu的利用率的百分比,包括sy+user. 当interval为0或者None时,表示的是interval时间内的sys的利用率。
当percpu为True返回是每一个cpu的利用率。

psutil.cpu_times_percent(interval=None, percpu=False)

psutil.cpu_count(logical=True)

Memory

psutil.virtual_memory()

返回一个内存信息的元组,大小为字节

total: 内存的总大小.
available: 可以用来的分配的内存,不同系统计算方式不同; Linux下的计算公式:free+ buffers + cached
percent: 已经用掉内存的百分比 (total - available) / total 100.
used: 已经用掉内存大小,不同系统计算方式不同
*free:
空闲未被分配的内存,Linux下不包括buffers和cached

Platform-specific fields:

active: (UNIX): 最近使用内存和正在使用内存。
inactive: (UNIX): 已经分配但是没有使用的内存
buffers: (Linux, BSD): 缓存,linux下的Buffers
cached:(Linux, BSD): 缓存,Linux下的cached.
wired: (BSD, OSX): 一直存在于内存中的部分,不会被移除
shared: (BSD): 缓存

内存总大小不等于Used+available,在windows系统可用内存和空闲内存是用一个。具体的可以examples/meminfo.py

psutil.swap_memory()
返回系统的swap信息

total: swap的总大小 单位为字节
used: 已用的swap大小 bytes
free: 空闲的swap大小 bytes
percent: 已用swap的百分比
sin: 从磁盘调入是swap的大小
sout: 从swap调出到disk的大小

sin, sout在windows没有意义。

Disks

psutil.disk_partitions(all=False)
返回所有挂载的分区的信息的列表,列表中的每一项类似于df命令的格式输出,包括分区,挂载点,文件系统格式,挂载参数等,会忽略掉/dev/shm,/proc/filesystem等,windows上分区格式 "removable", "fixed", "remote", "cdrom", "unmounted" or "ramdisk"。

>>>
>>> import psutil
>>> psutil.disk_partitions()
[sdiskpart(device=‘/dev/sda3‘, mountpoint=‘/‘, fstype=‘ext4‘, opts=‘rw,errors=remount-ro‘),
 sdiskpart(device=‘/dev/sda7‘, mountpoint=‘/home‘, fstype=‘ext4‘, opts=‘rw‘)]

psutil.disk_usage(path)
返回硬盘,分区或者目录的使用情况,单位字节
如果不存在会报“OSError”错误。

>>>
>>> import psutil
>>> psutil.disk_usage(‘/‘)
sdiskusage(total=21378641920, used=4809781248, free=15482871808, percent=22.5)

psutil.disk_io_counters(perdisk=False)
返回当前磁盘的io情况

read_count: number of reads
write_count: number of writes
read_bytes: number of bytes read
write_bytes: number of bytes written
read_time: time spent reading from disk (in milliseconds)
write_time: time spent writing to disk (in milliseconds)

If perdisk is True return the same information for every physical disk installed on the system as a dictionary with partition names as the keys and the namedutuple described above as the values. See examples/iotop.py for an example application.

>>>
>>> import psutil
>>> psutil.disk_io_counters()
sdiskio(read_count=8141, write_count=2431, read_bytes=290203, write_bytes=537676, read_time=5868, write_time=94922)
>>>
>>> psutil.disk_io_counters(perdisk=True)
{‘sda1‘: sdiskio(read_count=920, write_count=1, read_bytes=2933248, write_bytes=512, read_time=6016, write_time=4),
 ‘sda2‘: sdiskio(read_count=18707, write_count=8830, read_bytes=6060, write_bytes=3443, read_time=24585, write_time=1572),
 ‘sdb1‘: sdiskio(read_count=161, write_count=0, read_bytes=786432, write_bytes=0, read_time=44, write_time=0)}

Network

psutil.net_io_counters(pernic=False)
返回整个系统的网络信息

bytes_sent: 发送的字节数
bytes_recv: 接收的字节数
packets_sent: 发送到数据包的个数
packets_recv: 接受的数据包的个数
errin:
errout: 发送数据包错误的总数
dropin: 接收时丢弃的数据包的总数
dropout: 发送时丢弃的数据包的总数(OSX和BSD系统总是0)

如果 pernic值为True,会显示具体各个网卡的信息。

>>>
>>> import psutil
>>> psutil.net_io_counters()
snetio(bytes_sent=14508483, bytes_recv=62749361, packets_sent=84311, packets_recv=94888, errin=0, errout=0, dropin=0, dropout=0)
>>>
>>> psutil.net_io_counters(pernic=True)
{‘lo‘: snetio(bytes_sent=547971, bytes_recv=547971, packets_sent=5075, packets_recv=5075, errin=0, errout=0, dropin=0, dropout=0),
‘wlan0‘: snetio(bytes_sent=13921765, bytes_recv=62162574, packets_sent=79097, packets_recv=89648, errin=0, errout=0, dropin=0, dropout=0)}

psutil.net_connections(kind=‘inet‘)
返回系统的整个socket连接的信息,可以选择查看哪些类型的连接信息,类似于netstat命令

fd:
family: the address family, either AF_INET, AF_INET6 or AF_UNIX.
type: the address type, either SOCK_STREAM or SOCK_DGRAM.
laddr: the local address as a (ip, port) tuple or a path in case of AF_UNIX sockets.
raddr: the remote address as a (ip, port) tuple or an absolute path in case of UNIX sockets. When the remote endpoint is not connected you’ll get an empty tuple (AF_INET*) or None (AF_UNIX). On Linux AF_UNIX sockets will always have this set to None.
status: represents the status of a TCP connection. The return value is one of the psutil.CONN_* constants (a string). For UDP and UNIX sockets this is always going to be psutil.CONN_NONE.
pid: the PID of the process which opened the socket, if retrievable, else None. On some platforms (e.g. Linux) the availability of this field **changes depending on process privileges (root is needed).

参数kind的类型:
“inet” IPv4 and IPv6
“inet4” IPv4
“inet6” IPv6
“tcp” TCP
“tcp4” TCP over IPv4
“tcp6” TCP over IPv6
“udp” UDP
“udp4” UDP over IPv4
“udp6” UDP over IPv6
“unix” UNIX socket (both UDP and TCP protocols)
“all” the sum of all the possible families and protocols

>>>
>>> import psutil
>>> psutil.net_connections()
[pconn(fd=115, family=2, type=1, laddr=(‘10.0.0.1‘, 48776), raddr=(‘93.186.135.91‘, 80), status=‘ESTABLISHED‘, pid=1254),
 pconn(fd=117, family=2, type=1, laddr=(‘10.0.0.1‘, 43761), raddr=(‘72.14.234.100‘, 80), status=‘CLOSING‘, pid=2987),
 pconn(fd=-1, family=2, type=1, laddr=(‘10.0.0.1‘, 60759), raddr=(‘72.14.234.104‘, 80), status=‘ESTABLISHED‘, pid=None),
 pconn(fd=-1, family=2, type=1, laddr=(‘10.0.0.1‘, 51314), raddr=(‘72.14.234.83‘, 443), status=‘SYN_SENT‘, pid=None)
 ...]

Other system info

psutil.users()
返回当前系统用户登录信息

user: 用户的名称
terminal: 运行终端,tty还是pts等
host: 登录的IP
started: 登录了多长时间

>>>
>>> import psutil
>>> psutil.users()
[suser(name=‘giampaolo‘, terminal=‘pts/2‘, host=‘localhost‘, started=1340737536.0),
 suser(name=‘giampaolo‘, terminal=‘pts/3‘, host=‘localhost‘, started=1340737792.0)]

psutil.boot_time()
返回当前的时间

>>>
>>> import psutil, datetime
>>> psutil.boot_time()
1389563460.0
>>> datetime.datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S")
‘2014-01-12 22:51:00‘

Processes

Functions

psutil.pids()
返回当前运行的进程pid列表

psutil.pid_exists(pid)
是否存在次pid,快速的验证方式pid in psutil.pids()

psutil.process_iter()
返回一个包含Process对象的迭代器。每一个对象只创建一次,创建后缓存起来。当一个进程更新时,会更新缓存。遍历所有进程首选psutil.pids().迭代器排序是根据pid。

import psutil

for proc in psutil.process_iter():
    try:
        pinfo = proc.as_dict(attrs=[‘pid‘, ‘name‘])
    except psutil.NoSuchProcess:
        pass
    else:
        print(pinfo)

psutil.wait_procs(procs, timeout=None, callback=None)

Convenience function which waits for a list of Process instances to terminate. Return a (gone, alive) tuple indicating which processes are gone and which ones are still alive. The gone ones will have a new returncode attribute indicating process exit status (it may be None). callback is a function which gets called every time a process terminates (a Process instance is passed as callback argument). Function will return as soon as all processes terminate or when timeout occurs. Tipical use case is:

send SIGTERM to a list of processes
give them some time to terminate
send SIGKILL to those ones which are still alive

Example:

import psutil

def on_terminate(proc):
    print("process {} terminated".format(proc))

procs = [...]  # a list of Process instances
for p in procs:
    p.terminate()
gone, alive = wait_procs(procs, timeout=3, callback=on_terminate)
for p in alive:
    p.kill()

Exceptions

class psutil.Error
基础异常,psutil的其他异常都继承这个

class psutil.NoSuchProcess(pid, name=None, msg=None)
当进程不在进程列表中,或者进程不存在时触发。

class psutil.AccessDenied(pid=None, name=None, msg=None)
没有权限时,被触发

class psutil.TimeoutExpired(seconds, pid=None, name=None, msg=None)
当Process.wait() 超时,并且Process 一直在运行时.

psutil

标签(空格分隔): Python


Process class

class psutil.Process(pid=None)
Process类是一个带有pid的进程。如果没有指定pid,则默认的进程为os.getpid()所得进程。Process会触发NoSuchProcess(当进程不存在时)和AccessDenied异常,

注意

Process是通过pid绑定的。如果在一个Process实例,在psutil运行中pid进程死掉,而
这个pid又绑定给了别的新的进程。为了保证Process的安全性可以通过pid+createion time
方式来确认进程是否是同一个。

pid
进程的PID

ppid()
父进程pid. On Windows the return value is cached after first call.

name()
进程名.

exe()
进程运行命令的绝对路径。

cmdline()
The command line this process has been called with.

create_time()
进程创建时间

>>>
>>> import psutil, datetime
>>> p = psutil.Process()
>>> p.create_time()
1307289803.47
>>> datetime.datetime.fromtimestamp(p.create_time()).strftime("%Y-%m-%d %H:%M:%S")
‘2011-03-05 18:03:52‘

as_dict(attrs=None, ad_value=None)
返回进程信息的哈希字典的实用方法,attrs指定的值必须是Process的属性值,例如([‘cpu_times‘,‘name‘])

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.as_dict(attrs=[‘pid‘, ‘name‘, ‘username‘])
{‘username‘: ‘giampaolo‘, ‘pid‘: 12366, ‘name‘: ‘python‘}

parent()
返回父进程,如果不存在父进程,则返回None。

status()
进程当前运行状态,string形式。

cwd()
进程运行的所在的目录

username()
哪个用户下运行的进程

uids()
返回real=uid,effective,saved用户的uid

Availability: UNIX

gids()

Availability: UNIX

terminal()
The terminal associated with this process, if any, else None. This is similar to “tty” command but can be used for every process PID.

Availability: UNIX

nice(value=None)
获取或者设置进程的nice值,

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.nice(10)  # set
>>> p.nice()  # get
10
>>>

在windows系统上,只能通过GetProrityClassSetPriorityClasspsutil.*_PRIORITY_CLASS包含的值来设定

>>>
>>> p.nice(psutil.HIGH_PRIORITY_CLASS)

ionice(ioclass=None, value=None)
获取或者设置进程I/O的优先级。Linux上的ioclass的值psutil.IOPRO_CLASS_*值在0-7,windows 2 为正常,1为优先级低,0为非常低。

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.ionice(psutil.IOPRIO_CLASS_IDLE)  # set
>>> p.ionice()  # get
pionice(ioclass=3, value=0)
>>>

rlimit(resource, limits=None)
Get or set process resource limits (see man prlimit). resource is one of the psutil.RLIMIT_* constants. limits is a (soft, hard) tuple. This is the same as resource.getrlimit() and resource.setrlimit() but can be used for every process PID and only on Linux. Example:

>>>
>>> import psutil
>>> p = psutil.Process()
>>> # process may open no more than 128 file descriptors
>>> p.rlimit(psutil.RLIMIT_NOFILE, (128, 128))
>>> # process may create files no bigger than 1024 bytes
>>> p.rlimit(psutil.RLIMIT_FSIZE, (1024, 1024))
>>> # get
>>> p.rlimit(psutil.RLIMIT_FSIZE)
(1024, 1024)
>>>

Availability: Linux

io_counters()
返回这个进程的IO情况

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.io_counters()
pio(read_count=454556, write_count=3456, read_bytes=110592, write_bytes=0)

Availability: all platforms except OSX

num_ctx_switches()
The number voluntary and involuntary context switches performed by this process.

num_fds()
The number of file descriptors used by this process.

Availability: UNIX

num_handles()
The number of handles used by this process.

Availability: Windows

num_threads()
The number of threads currently used by this process.

threads()
Return threads opened by process as a list of namedtuples including thread id and thread CPU times (user/system).

cpu_times()
Return a tuple whose values are process CPU user and system times which means the amount of time expressed in seconds that a process has spent in user / system mode. This is similar to os.times() but can be used for every process PID.

cpu_percent(interval=None)
Return a float representing the process CPU utilization as a percentage. When interval is > 0.0 compares process times to system CPU times elapsed before and after the interval (blocking). When interval is 0.0 or None compares process times to system CPU times elapsed since last call, returning immediately. That means the first time this is called it will return a meaningless 0.0 value which you are supposed to ignore. In this case is recommended for accuracy that this function be called a second time with at least 0.1 seconds between calls. Example:

>>>
>>> import psutil
>>> p = psutil.Process()
>>>
>>> # blocking
>>> p.cpu_percent(interval=1)
2.0
>>> # non-blocking (percentage since last call)
>>> p.cpu_percent(interval=None)
2.9
>>>

Note a percentage > 100 is legitimate as it can result from a process with multiple threads running on different CPU cores.
Warning the first time this method is called with interval = 0.0 or None it will return a meaningless 0.0 value which you are supposed to ignore.
cpu_affinity(cpus=None)
Get or set process current CPU affinity. CPU affinity consists in telling the OS to run a certain process on a limited set of CPUs only. The number of eligible CPUs can be obtained with list(range(psutil.cpu_count())).

>>>
>>> import psutil
>>> psutil.cpu_count()
4
>>> p = psutil.Process()
>>> p.cpu_affinity()  # get
[0, 1, 2, 3]
>>> p.cpu_affinity([0])  # set; from now on, process will run on CPU #0 only
>>> p.cpu_affinity()
[0]
>>>
>>> # reset affinity against all CPUs
>>> all_cpus = list(range(psutil.cpu_count()))
>>> p.cpu_affinity(all_cpus)
>>>

Availability: Linux, Windows, BSD

Changed in version 2.2.0: added support for FreeBSD

memory_info()
Return a tuple representing RSS (Resident Set Size) and VMS (Virtual Memory Size) in bytes. On UNIX rss and vms are the same values shown by ps. On Windows rss and vms refer to “Mem Usage” and “VM Size” columns of taskmgr.exe. For more detailed memory stats use memory_info_ex().

memory_info_ex()
Return a namedtuple with variable fields depending on the platform representing extended memory information about the process. All numbers are expressed in bytes.

Linux OSX BSD SunOS Windows
rss rss rss rss num_page_faults
vms vms vms vms peak_wset
shared pfaults text   wset
text pageins data   peak_paged_pool
lib   stack   paged_pool
data       peak_nonpaged_pool
dirty       nonpaged_pool
        pagefile
        peak_pagefile
        private

Windows metrics are extracted from PROCESS_MEMORY_COUNTERS_EX structure. Example on Linux:

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.memory_info_ex()
pextmem(rss=15491072, vms=84025344, shared=5206016, text=2555904, lib=0, data=9891840, dirty=0)

memory_percent()
Compare physical system memory to process resident memory (RSS) and calculate process memory utilization as a percentage.

memory_maps(grouped=True)
Return process’s mapped memory regions as a list of nameduples whose fields are variable depending on the platform. As such, portable applications should rely on namedtuple’s path and rss fields only. This method is useful to obtain a detailed representation of process memory usage as explained here. If grouped is True the mapped regions with the same path are grouped together and the different memory fields are summed. If grouped is False every mapped region is shown as a single entity and the namedtuple will also include the mapped region’s address space (addr) and permission set (perms). See examples/pmap.py for an example application.

>>>
>>> import psutil
>>> p = psutil.Process()
>>> p.memory_maps()
[pmmap_grouped(path=‘/lib/x8664-linux-gnu/libutil-2.15.so‘, rss=16384, anonymous=8192, swap=0),
 pmmap_grouped(path=‘/lib/x8664-linux-gnu/libc-2.15.so‘, rss=6384, anonymous=15, swap=0),
 pmmap_grouped(path=‘/lib/x8664-linux-gnu/libcrypto.so.0.1‘, rss=34124, anonymous=1245, swap=0),
 pmmap_grouped(path=‘[heap]‘, rss=54653, anonymous=8192, swap=0),
 pmmap_grouped(path=‘[stack]‘, rss=1542, anonymous=166, swap=0),
 ...]
>>>

children(recursive=False)
Return the children of this process as a list of Process objects, pre-emptively checking whether PID has been reused. If recursive is True return all the parent descendants. Example assuming A == this process:

A ─┐

├─ B (child) ─┐
│ └─ X (grandchild) ─┐
│ └─ Y (great grandchild)
├─ C (child)
└─ D (child)

>>> p.children()
B, C, D
>>> p.children(recursive=True)
B, X, Y, C, D

Note that in the example above if process X disappears process Y won’t be returned either as the reference to process A is lost.

open_files()
Return regular files opened by process as a list of namedtuples including the absolute file name and the file descriptor number (on Windows this is always -1). Example:

>>>
>>> import psutil
>>> f = open(‘file.ext‘, ‘w‘)
>>> p = psutil.Process()
>>> p.open_files()
[popenfile(path=‘/home/giampaolo/svn/psutil/file.ext‘, fd=3)]

connections(kind="inet")
Return socket connections opened by process as a list of namedutples. To get system-wide connections use psutil.net_connections(). Every namedtuple provides 6 attributes:

fd: the socket file descriptor. This can be passed to socket.fromfd() to obtain a usable socket object. This is only available on UNIX; on Windows -1 is always returned.
family: the address family, either AF_INET, AF_INET6 or AF_UNIX.
type: the address type, either SOCK_STREAM or SOCK_DGRAM.
laddr: the local address as a (ip, port) tuple or a path in case of AF_UNIX sockets.
raddr: the remote address as a (ip, port) tuple or an absolute path in case of UNIX sockets. When the remote endpoint is not connected you’ll get an empty tuple (AF_INET) or None (AF_UNIX). On Linux AF_UNIX sockets will always have this set to None.
status: represents the status of a TCP connection. The return value is one of the psutil.CONN_* constants. For UDP and UNIX sockets this is always going to be psutil.CONN_NONE.

The kind parameter is a string which filters for connections that fit the following criteria:

Kind value Connections using
“inet” IPv4 and IPv6
“inet4” IPv4
“inet6” IPv6
“tcp” TCP
“tcp4” TCP over IPv4
“tcp6” TCP over IPv6
“udp” UDP
“udp4” UDP over IPv4
“udp6” UDP over IPv6
“unix” UNIX socket (both UDP and TCP protocols)
“all” the sum of all the possible families and protocols

Example:

>>>
>>> import psutil
>>> p = psutil.Process(1694)
>>> p.name()
‘firefox‘
>>> p.connections()
[pconn(fd=115, family=2, type=1, laddr=(‘10.0.0.1‘, 48776), raddr=(‘93.186.135.91‘, 80), status=‘ESTABLISHED‘),
 pconn(fd=117, family=2, type=1, laddr=(‘10.0.0.1‘, 43761), raddr=(‘72.14.234.100‘, 80), status=‘CLOSING‘),
 pconn(fd=119, family=2, type=1, laddr=(‘10.0.0.1‘, 60759), raddr=(‘72.14.234.104‘, 80), status=‘ESTABLISHED‘),
 pconn(fd=123, family=2, type=1, laddr=(‘10.0.0.1‘, 51314), raddr=(‘72.14.234.83‘, 443), status=‘SYN_SENT‘)]

is_running()
判断进程是否存活
Return whether the current process is running in the current process list. This is reliable also in case the process is gone and its PID reused by another process, therefore it must be preferred over doing psutil.pid_exists(p.pid).

Note this will return True also if the process is a zombie (p.status() == psutil.STATUS_ZOMBIE).
send_signal(signal)
发送新号给进程
Send a signal to process (see signal module constants) pre-emptively checking whether PID has been reused. This is the same as os.kill(pid, sig). On Windows only SIGTERM is valid and is treated as an alias for kill().

suspend()
Suspend process execution with SIGSTOP signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGSTOP). On Windows this is done by suspending all process threads execution.

resume()
Resume process execution with SIGCONT signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGCONT). On Windows this is done by resuming all process threads execution.

terminate()
Terminate the process with SIGTERM signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGTERM). On Windows this is an alias for kill().

kill()
Kill the current process by using SIGKILL signal pre-emptively checking whether PID has been reused. On UNIX this is the same as os.kill(pid, signal.SIGKILL). On Windows this is done by using TerminateProcess.

wait(timeout=None)
Wait for process termination and if the process is a children of the current one also return the exit code, else None. On Windows there’s no such limitation (exit code is always returned). If the process is already terminated immediately return None instead of raising NoSuchProcess. If timeout is specified and process is still alive raise TimeoutExpired exception. It can also be used in a non-blocking fashion by specifying timeout=0 in which case it will either return immediately or raise TimeoutExpired. To wait for multiple processes use psutil.wait_procs().

Popen class

class psutil.Popen(*args, **kwargs)
A more convenient interface to stdlib subprocess.Popen. It starts a sub process and deals with it exactly as when using subprocess.Popen but in addition it also provides all the methods of psutil.Process class in a single interface. For method names common to both classes such as send_signal(), terminate() and kill() psutil.Process implementation takes precedence. For a complete documentation refer to subprocess module documentation.

Note Unlike subprocess.Popen this class pre-emptively checks wheter PID has been reused on send_signal(), terminate() and kill() so that you don’t accidentally terminate another process, fixing http://bugs.python.org/issue6973.

>>>
>>> import psutil
>>> from subprocess import PIPE
>>>
>>> p = psutil.Popen(["/usr/bin/python", "-c", "print(‘hello‘)"], stdout=PIPE)
>>> p.name()
‘python‘
>>> p.username()
‘giampaolo‘
>>> p.communicate()
(‘hello\n‘, None)
>>> p.wait(timeout=2)
0
>>>

Constants

psutil.STATUS_RUNNING
psutil.STATUS_SLEEPING
psutil.STATUS_DISK_SLEEP
psutil.STATUS_STOPPED
psutil.STATUS_TRACING_STOP
psutil.STATUS_ZOMBIE
psutil.STATUS_DEAD
psutil.STATUS_WAKE_KILL
psutil.STATUS_WAKING
psutil.STATUS_IDLE
psutil.STATUS_LOCKED
psutil.STATUS_WAITING

A set of strings representing the status of a process. Returned by psutil.Process.status().

psutil.CONN_ESTABLISHED
psutil.CONN_SYN_SENT
psutil.CONN_SYN_RECV
psutil.CONN_FIN_WAIT1
psutil.CONN_FIN_WAIT2
psutil.CONN_TIME_WAIT
psutil.CONN_CLOSE
psutil.CONN_CLOSE_WAIT
psutil.CONN_LAST_ACK
psutil.CONN_LISTEN
psutil.CONN_CLOSING
psutil.CONN_NONE
psutil.CONN_DELETE_TCB(Windows)
psutil.CONN_IDLE(Solaris)
psutil.CONN_BOUND(Solaris)

A set of strings representing the status of a TCP connection. Returned by psutil.Process.connections() (status field).

psutil.ABOVE_NORMAL_PRIORITY_CLASS
psutil.BELOW_NORMAL_PRIORITY_CLASS
psutil.HIGH_PRIORITY_CLASS
psutil.IDLE_PRIORITY_CLASS
psutil.NORMAL_PRIORITY_CLASS
psutil.REALTIME_PRIORITY_CLASS
A set of integers representing the priority of a process on Windows (see MSDN documentation). They can be used in conjunction with psutil.Process.nice() to get or set process priority.

Availability: Windows

psutil.IOPRIO_CLASS_NONE
psutil.IOPRIO_CLASS_RT
psutil.IOPRIO_CLASS_BE
psutil.IOPRIO_CLASS_IDLE
A set of integers representing the I/O priority of a process on Linux. They can be used in conjunction with psutil.Process.ionice() to get or set process I/O priority. IOPRIO_CLASS_NONE and IOPRIO_CLASS_BE (best effort) is the default for any process that hasn’t set a specific I/O priority. IOPRIO_CLASS_RT (real time) means the process is given first access to the disk, regardless of what else is going on in the system. IOPRIO_CLASS_IDLE means the process will get I/O time when no-one else needs the disk. For further information refer to manuals of ionice command line utility or ioprio_get system call.

Availability: Linux

psutil.RLIMIT_INFINITY
psutil.RLIMIT_AS
psutil.RLIMIT_CORE
psutil.RLIMIT_CPU
psutil.RLIMIT_DATA
psutil.RLIMIT_FSIZE
psutil.RLIMIT_LOCKS
psutil.RLIMIT_MEMLOCK
psutil.RLIMIT_MSGQUEUE
psutil.RLIMIT_NICE
psutil.RLIMIT_NOFILE
psutil.RLIMIT_NPROC
psutil.RLIMIT_RSS
psutil.RLIMIT_RTPRIO
psutil.RLIMIT_RTTIME
psutil.RLIMIT_RTPRIO
psutil.RLIMIT_SIGPENDING
psutil.RLIMIT_STACK
Constants used for getting and setting process resource limits to be used in conjunction with psutil.Process.rlimit(). See man prlimit for futher information.

Availability: Linux

文/Zhaifg(简书作者)
原文链接:http://www.jianshu.com/p/64e265f663f6
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。

时间: 2024-10-14 22:05:13

psutil--跨平台的进程管理的相关文章

python跨平台的进程管理psutil

psutil 是一个 Python模块用来获取正在运行的进程信息和系统的CPU和内存的利用率.类似 Linux 的 ps .top 和 Windows 的任务管理器等程序.可以处理系统CPU,memory,disks,network等信息.主要用于系统资源的监控,分析,以及对进程进行一定的管理.通过psutil可以实现如ps,top,lsof,netstat,ifconfig,who,df,kill,free,nice,ionice,iostat,iotop,uptime,pidof,tty,t

linux进程管理及计划任务

什么是进程? 在Linux系统当中:触法任何一个事件时,系统都会将它定义成为一个进程,并且给予这个进程一个ID,称为PID,同时依据触发这个进程的用户与相关属性关系,给予这个PID一组有效的权限设置. 进程与程序: 程序(program):通常为二进制程序放置在存储媒介中,以物理文件的形式存在. 进程(process):程序被触发后,执行者的权限与属性.程序的程序代码与所需数据等都会被加载到内存中,操作系统并给予这个内存内的单元一个标识符(PID),可以说,进程就是一个正在运行中的程序. 进程I

Linux进程管理简谈

Linux系统进程管理简谈 进程是什么? 简单来说进程是一个正在执行的程序的一个副本,存在生命周期,有段指令和代码在不断运行. linux内核存储信息的固定格式:task struct 进程的相关信息存储在链表中 多个任务的task struct组件的链表:task list 进程的创建:父进程创建子进程(内核创建init进程,剩余一切进程有init及其子进程进程创建) 父进程创建子进程时向内核调用fork()来创建子进程并且通过调用clone()复制父进程的信息给子进程 Linux进程的优先级

进程管理工具 htop/glances/dstat的使用

htop:interactive process viewer(交互式进程查看器) htop:是一款比top功能更强大的进程管理工具,默认系统并未安装,需用户自行选择安装,此处yum仓库具体配置可参见前期博文yum的用法,配好后直接执行如下安装命令: # yum install htop -y htop出现如下界面: 我们可以看到:左上显示CPU.内存.Swap使用情况,右边显示任务.负载.开机时间,下面就是进程状况, 底部功能,F1:帮助 F2:设定 F3:搜索进程 F4:增量进程 F5:以树

进程管理工具之top、htop、glances、dstat

进程管理经常用到的工具有:top.htop.glances.dstat,下面一一介绍. htop.glances.dstat都是epel源里面的工具,需要单独安装. 推荐阿里云的yum镜像站点: CentOS6 :http://mirrors.aliyun.com/epel/6Server/x86_64/ CentOS7 :http://mirrors.aliyun.com/epel/7/x86_64 top命令 top命令常用参数: -d 1    # 设置刷新时间间隔为1s[默认是3秒] -

boost:进程管理

概述 Boost.Process提供了一个灵活的C++ 进程管理框架.它允许C++ developer可以像Java和.Net程序developer那样管理进程.它还提供了管理当前执行进程上下文.创建子进程.用C++ 流和异步I/O进行通信的能力.该库以完全透明的方式将所有进程管理的抽象细节呈现给使用者,且该库是跨平台的. 特点 进程管理 Boost.Process的长期目标是提供一个抽象于操作系统之上的,可以管理任何运行的进程的框架.由于提供这样的API比较困难,所以现在只专注于管理.Boos

CentOS的进程管理二

在上一篇中已经写了一些进程管理的相关命令: pstree, ps,pgrep,pidof, top 下面继续: vmstat ---- 显示虚拟内存统计 格式: vmstat [options] [delay [count]] 显示结果摘要: procs-----------memory-------------swap-- -----io---- -system-- ------cpu----- r b   swpd   free  buff cache   si  so    bi   bo

linux进程管理

进程管理 进程 Process 某应用程序打开的进程 PID Process ID 类型: 用户空间进程 内核空间进程 静态查看进程的状态 # ps [[email protected] ~]# ps >>>>查看本终端的进程 PID TTY          TIME CMD 4206 pts/0    00:00:00 bash 4378 pts/0    00:00:00 ps 选项的使用方式: BSD风格:选项没有横线- ps aux SysV风格:选项需要带有横线-  

Linux进程管理与调度-之-目录导航【转】

转自:http://blog.csdn.net/gatieme/article/details/51456569 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme 目录(?)[-] 项目链接 进程的描述 进程的创建 进程的加载与运行 进程的退出 进程的调度 调度普通进程-完全公平调度器CFS 日期 内核版本 架构 作者 GitHub CSDN 2016-07-21 Linux-4.6 X86 & arm gatieme