Spark3000门徒第14课spark RDD解密总结

今晚听了王家林老师的第14课spark RDD解密,课堂笔记如下:

Spark是基于工作集的应用抽象,RDD:Resillient Distributed Dataset是基于工作集的,spark可以对结果重用。

位置感知:spark比hadoop更精致。

RDD是lazy的,是分布式函数式编程的抽象,RDD可以看做一个只读的List或者Array。产生的中间结果怎么办? 不能让
他立即计算,采用Lazy级别,只对数据处理做标记。所以RDD操作是有向的,链式的,所以Stage有1000个步骤,不需要999个中间结果,默认只产生一次结果。数据量越大,计算步骤越多,优势更明显。

protected def getPartitions: Array[Partition]

/*** :: DeveloperApi ::
* Implemented by subclasses to compute a given partition.
*/
@DeveloperApi
def compute(split: Partition, context: TaskContext): Iterator[T]

这样所有RDD操作返回一个迭代器,这样后续框架可以无缝集成,用迭代器来遍历结果就可以了,不需要知

道具体结构。

RDD缺陷:
不支持细粒度的更新操作以及增量迭代计算

后续课程可以参照新浪微博 王家林_DT大数据梦工厂:http://weibo.com/ilovepains

王家林  中国Spark第一人,微信公共号DT_Spark

转发请写明出处。

时间: 2024-12-15 01:54:53

Spark3000门徒第14课spark RDD解密总结的相关文章

Spark3000门徒第七课Spark运行原理及RDD解密总结

今晚听了王家林老师的第七课Spark运行原理及RDD解密,课后作业是:spark基本原理,我的总结如下: 1 spark是分布式 基于内存 特别适合于迭代计算的计算框架 2 mapReduce就两个阶段map和reduce,而spark是不断地迭代计算,更加灵活更加强大,容易构造复杂算法. 3 spark不能取代hive,hive做数据仓库存储,spark sql只是取代hive的计算引擎 4 spark中间数据可以在内存也可以在磁盘 5 partition是一个数据集合 6 注意:初学者执行多

Spark3000门徒第13课Spark内核架构解密总结

昨晚听了王家林老师的第13课Spark内核架构解密,课堂笔记如下: executor中线程池并发执行和复用,Spark executor, backed by a threadpool to run tasks. 默认一个work为一个Application只开启一个executor.一个worker里executor是多点好还是少点好,看具 体情况. Worker:管理当前Node机器资源,并接受Master的指令来分配具体的计算资源Executor(使用ExecutorRunner 在新的进

Spark3000门徒第12课Spark HA实战总结

今晚听了王家林老师的第12课Spark HA实战,课堂笔记以及作业如下: Spark HA需要安装zookeeper,推荐稳定版3.4.6. 1.下载zookeeper3.4.6,2.配置环境变量3.创建data logs4.vi conf/zoo.cfg5 data目录中创建myid spark-env.sh 配置HA : export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zo

第14课:Spark RDD解密

以下为Spark RDD解密课程学习心得: 在介绍Spark RDD之前,先简单的说下Hadoop MapReduce,它是基于数据流的方式进行计算,从物理存储上加载数据,然后操作数据, 最后写入到物理存储设备上,这样的模式会产生大量的中间结果. MapReduce不适合场景:1.不适合大量迭代计算场景,2.交互式查询(重点是:基于数据流的方式不能复用中间的计算结果) 而Spark RDD是基于工作集的方式,RDD名称叫:弹性式分布式数据集. RDD的弹性式主要分为以下几点:        1.

Spark RDD解密

1.  基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数据流的方式不能够复用曾经的结果或者中间的结果; 2. RDD弹性数据集 特点: A)自动的进行内存和磁盘数据的存储切换: B) 基于lineage的高效容错: C) Task如果失败会自动进行重试 D) Stage如果失败会自动进行重试,而且只会计算失败的分片; E) Checkpoint和pers

Spark3000门徒第15课RDD创建内幕彻底解密总结

今晚听了王家林老师的第15课RDD创建内幕彻底解密,课堂笔记如下: Spark driver中第一个RDD:代表了Spark应用程序输入数据的来源.后续通过Transformation来对RDD进行各种算子的转换实现算法 创建RDD的方法:1,使用程序中的集合创建RDD;2,使用本地文件系统创建RDD:3,使用HDFS创建RDD 4,基于DB创建RDD5,基于NoSQL,例如HBase 6,基于S3创建RDD 7,基于数据流创建RDD 不指定并行度,有多少core就用多少core,所以需要资源管

Spark3000门徒第9课IDEA中开发Spark实战总结

今晚听了王家林老师的第9课IDEA中开发Spark实战,课后作业是:在Idea中编写广告点击排名的程序并提交集群测试, IDEA社区版本就够用,Ultimate没必要还要钱 程序如下: object WordCountCluster { def main(args: Array[String]){ /** * 第一步:创建spark的配置对象SparkConf,设置Spark程序的运行时的配置信息 * */ val conf = new SparkConf() //创建SparkConf对象 c

Spark3000门徒第8课IDE中开发Spark实战总结

今晚听了王家林老师的第8课IDE中开发Spark实战,课后作业是:在Eclipse中编写广告点击排名的程序并测试,程序如下: object WordCountCluster { def main(args: Array[String]){ /** * 第一步:创建spark的配置对象SparkConf,设置Spark程序的运行时的配置信息 */ val conf = new SparkConf() //创建SparkConf对象 conf.setAppName("First App")

Spark3000门徒第10课Java开发Spark实战总结

今晚听了王家林老师的第10课Java开发Spark实战,课后作业是:用Java方式采用Maven开发Spark的WordCount并运行在集群中 先配置pom.xml <groupId>com.dt.spark</groupId> <artifactId>SparkApps</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging