自己动手写CPU之第五阶段(2)——OpenMIPS对数据相关问题的解决措施

将陆续上传本人写的新书《自己动手写CPU》(尚未出版),今天是第16篇,我尽量每周四篇

5.2 OpenMIPS对数据相关问题的解决措施

OpenMIPS处理器采用数据前推的方法来解决流水线数据相关问题。通过补充完善图4-4原始的数据流图,添加部分信号使得可以完成数据前推的工作,如图5-7所示。主要是将执行阶段的结果、访存阶段的结果前推到译码阶段,参与译码阶段选择运算源操作数的过程。

图5-8给出了为实现数据前推而对OpenMIPS系统结构所做的修改。有两个方面。

(1)将处于流水线执行阶段的指令的运算结果,包括:是否要写目的寄存器wreg_o、要写的目的寄存器地址wd_o、要写入目的寄存器的数据wdata_o等信息送到译码阶段,如图5-8中虚线所示。

(2)将处于流水线访存阶段的指令的运算结果,包括:是否要写目的寄存器wreg_o、要写的目的寄存器地址wd_o、要写入目的寄存器的数据wdata_o等信息送到译码阶段。

为此,译码阶段的ID模块要增加如表5-1所示的接口。

译码阶段的ID模块会依据送入的信息,进行综合判断,解决数据相关,给出最后要参与运算的操作数。ID模块的代码要做如下修改,其中主要修改部分使用加粗、斜体表示。修改后的代码位于本书光盘的Code\Chapter5_1目录下的id.v文件。

module id(

	......

	//处于执行阶段的指令的运算结果
	input wire			   ex_wreg_i,
	input wire[`RegBus]		   ex_wdata_i,
	input wire[`RegAddrBus]       ex_wd_i,

	//处于访存阶段的指令的运算结果
	input wire		          mem_wreg_i,
	input wire[`RegBus]           mem_wdata_i,
	input wire[`RegAddrBus]       mem_wd_i,

...... 	      

	//送到执行阶段的源操作数1、源操作数2
	output reg[`RegBus]           reg1_o,
	output reg[`RegBus]           reg2_o,
	......
);

       ......

       //给reg1_o赋值的过程增加了两种情况:
       //1、如果Regfile模块读端口1要读取的寄存器就是执行阶段要写的目的寄存器,
       //   那么直接把执行阶段的结果ex_wdata_i作为reg1_o的值;
       //2、如果Regfile模块读端口1要读取的寄存器就是访存阶段要写的目的寄存器,
       //   那么直接把访存阶段的结果mem_wdata_i作为reg1_o的值;
    	always @ (*) begin
	  if(rst == `RstEnable) begin
		reg1_o <= `ZeroWord;
	  end else if((reg1_read_o == 1'b1) && (ex_wreg_i == 1'b1)
			   && (ex_wd_i == reg1_addr_o)) begin
		reg1_o <= ex_wdata_i;
	  end else if((reg1_read_o == 1'b1) && (mem_wreg_i == 1'b1)
		          && (mem_wd_i == reg1_addr_o)) begin
		reg1_o <= mem_wdata_i;
	  end else if(reg1_read_o == 1'b1) begin
	  	reg1_o <= reg1_data_i;
	  end else if(reg1_read_o == 1'b0) begin
	  	reg1_o <= imm;
	  end else begin
	    reg1_o <= `ZeroWord;
	  end
	end

       //给reg2_o赋值的过程增加了两种情况:
       //1、如果Regfile模块读端口2要读取的寄存器就是执行阶段要写的目的寄存器,
       //   那么直接把执行阶段的结果ex_wdata_i作为reg2_o的值;
       //2、如果Regfile模块读端口2要读取的寄存器就是访存阶段要写的目的寄存器,
       //   那么直接把访存阶段的结果mem_wdata_i作为reg2_o的值;
	always @ (*) begin
	  if(rst == `RstEnable) begin
		reg2_o <= `ZeroWord;
	   end else if((reg2_read_o == 1'b1) && (ex_wreg_i == 1'b1)
			    && (ex_wd_i == reg2_addr_o)) begin
		reg2_o <= ex_wdata_i;
	   end else if((reg2_read_o == 1'b1) && (mem_wreg_i == 1'b1)
			    && (mem_wd_i == reg2_addr_o)) begin
		reg2_o <= mem_wdata_i;
	   end else if(reg2_read_o == 1'b1) begin
	  	reg2_o <= reg2_data_i;
	   end else if(reg2_read_o == 1'b0) begin
	  	reg2_o <= imm;
	   end else begin
	       reg2_o <= `ZeroWord;
	  end
	end

endmodule

除了修改译码阶段ID模块的代码,还要修改顶层模块OpenMIPS对应的代码,在其中增加图5-8所示的连接关系。具体修改过程不在书中列出,读者可以参考本书附带光盘的Code\Chapter5_1目录下的openmips.v文件。(代码会在稍后上传)

5.3 测试数据相关问题解决效果

测试程序如下,其中存在5.1节讨论的RAW相关的三种情况,源文件是本书附带光盘Code\Chapter5_1\AsmTest目录下的inst_rom.S文件。

.org 0x0
.global _start
.set noat
_start:
   ori $1,$0,0x1100        # $1 = $0 | 0x1100 = 0x1100
   ori $1,$1,0x0020        # $1 = $1 | 0x0020 = 0x1120
   ori $1,$1,0x4400        # $1 = $1 | 0x4400 = 0x5520
   ori $1,$1,0x0044        # $1 = $1 | 0x0044 = 0x5564

指令的注释给出了预期执行效果。将上述inst_rom.S文件,与第4章实现的Bin2Mem.exe、Makefile、ram.ld这三个文件拷贝到Ubuntu虚拟机中的同一个目录下,打开终端,使用cd命令进入该目录,然后输入make  all,即可得到能够用于ModelSim仿真的inst_rom.data文件。

在ModelSim中新建一个工程,添加本书附带光盘Code\Chapter5_1目录下的所有.v文件,然后可以编译。再复制上面得到的inst_rom.data文件到ModelSim工程的目录下,就可以进行仿真了。ModelSim中新建工程、仿真的详细步骤可以参考第2章。

运行仿真,观察寄存器$1值的变化,如图5-9所示,$1的变化符合预期,所以修改后的OpenMIPS正确解决了数据相关问题。

下一步将实现逻辑、移位、空指令,敬请关注!

自己动手写CPU之第五阶段(2)——OpenMIPS对数据相关问题的解决措施

时间: 2024-08-01 06:25:05

自己动手写CPU之第五阶段(2)——OpenMIPS对数据相关问题的解决措施的相关文章

自己动手写CPU之第五阶段(4)——逻辑、移位与空指令的实现

将陆续上传本人写的新书<自己动手写CPU>(尚未出版),今天是第18篇,我尽量每周四篇 5.5 修改OpenMIPS以实现逻辑.移位操作与空指令 为了实现逻辑.移位操作与空指令(其中nop.ssnop不用特意实现,可以认为是特殊的逻辑左移指令sll),只需要修改OpenMIPS的如下两个模块. 修改译码阶段的ID模块,用以实现对上述指令的译码. 修改执行阶段的EX模块,使其按照译码结果进行运算. 5.5.1 修改译码阶段的ID模块 首先给出如下宏定义,都在文件defines.v中定义,读者可以

自己动手写CPU之第五阶段(3)——MIPS指令集中的逻辑、移位与空指令

将陆续上传本人写的新书<自己动手写CPU>(尚未出版),今天是第17篇,我尽量每周四篇 5.4 逻辑.移位操作与空指令说明 MIPS32指令集架构中定义的逻辑操作指令有8条:and.andi.or.ori.xor.xori.nor.lui,其中ori指令已经实现了,本章要实现其余7条指令. MIPS32指令集架构中定义的移位操作指令有6条:sll.sllv.sra.srav.srl.srlv. MIPS32指令集架构中定义的空指令有2条:nop.ssnop.其中ssnop是一种特殊类型的空操作

自己动手写CPU之第五阶段(1)——流水线数据相关问题

将陆续上传本人写的新书<自己动手写CPU>(尚未出版),今天是第15篇,我尽量每周四篇 上一章建立了原始的OpenMIPS五级流水线结构,但是只实现了一条ori指令,从本章开始,将逐步完善.本章首先讨论了流水线数据相关问题,然后修改OpenMIPS以解决该问题,并在5.3节验证了解决效果.接着对逻辑.移位操作与空指令的指令格式.用法.作用进行了一一说明,在5.5节通过扩展OpenMIPS实现了这些指令,最后编写测试程序,对实现效果进行了检验. 5.1 流水线数据相关问题 我们在第4章实现的五级

自己动手写CPU之第五阶段(5)——测试逻辑、移位与空指令的实现

将陆续上传本人写的新书<自己动手写CPU>(尚未出版),今天是第19篇,我尽量每周四篇 5.6 测试程序1--测试逻辑操作实现效果 编写如下测试程序用于检验逻辑操作指令是否实现正确,文件名命名为inst_rom.S,在本附带光盘Code\Chapter5_2\AsmTest\LogicInstTest目录下有测试程序源文件. .org 0x0 .global _start .set noat _start: lui $1,0x0101 # $1 = 0x01010000 ori $1,$1,0

自己动手写CPU_5_5.2 OpenMIPS对数据相关问题的解决措施

5.2 OpenMIPS对数据相关问题的解决措施 OpenMIPS采用数据前推的方式来解决流水线数据相关问题.如图所示(虚线),将执行阶段的结果.访存阶段的结果推到译码阶段,参与译码阶段选择运算源操作数的过程. 下图给出了实现数据前推对OpenMIPS系统结构的修改,具体为以下两方面: 1. 处于EX阶段的指令运算结果送到ID阶段. 2. 将MEM阶段的指令送到ID阶段. 为此需要修改ID模块的接口: 译码阶段的ID模块会根据送入的信息进行判断,解决数据相关,给出最后要参与运算的操作数.ID模块

自己动手写CPU之第七阶段(2)——简单算术操作指令实现过程

将陆续上传本人写的新书<自己动手写CPU>,今天是第25篇,我尽量每周四篇 亚马逊的预售地址如下,欢迎大家围观呵! http://www.amazon.cn/dp/b00mqkrlg8/ref=cm_sw_r_si_dp_5kq8tb1gyhja4 China-pub的预售地址如下: http://product.china-pub.com/3804025 7.2 简单算术操作指令实现思路 虽然简单算术操作指令的数目比较多,有15条,但实现方式都是相似的,与前几章逻辑.移位操作指令的实现方式也

自己动手写CPU之第七阶段(3)——简单算术操作指令实现过程(续)

将陆续上传本人写的新书<自己动手写CPU>,今天是第26篇,我尽量每周四篇 China-pub的预售地址如下(有目录.内容简介.前言): http://product.china-pub.com/3804025 亚马逊的预售地址如下,欢迎大家围观呵! http://www.amazon.cn/dp/b00mqkrlg8/ref=cm_sw_r_si_dp_5kq8tb1gyhja4 为了实现简单算术指令,需要修改译码阶段的ID模块.执行阶段的EX模块,上一篇博文中已经介绍了对译码阶段ID模块的

自己动手写CPU之第六阶段(2)——移动操作指令实现思路

将陆续上传本人写的新书<自己动手写CPU>(尚未出版),今天是第21篇,我尽量每周四篇 6.2 移动操作指令实现思路 6.2.1 实现思路 这6条移动操作指令可以分为两类:一类是不涉及特殊寄存器HI.LO的指令,包括movn.movz:另一类是涉及特殊寄存器HI.LO的指令,包括mfhi.mflo.mthi.mtlo.前一类很好实现,基本思路与第5章实现逻辑.移位操作指令时类似,只需要修改ID.EX模块即可.后一类涉及到特殊寄存器HI.LO,需要为OpenMIPS添加HI.LO寄存器,以及相应

自己动手写CPU之第七阶段(1)——简单算术操作指令说明

将陆续上传本人写的新书<自己动手写CPU>(尚未出版),今天是第24篇,我尽量每周四篇 本章将实现MIPS32指令集架构定义的所有算术操作指令,共有21条,按照OpenMIPS实现这些指令的方式,可以分为三类,分别介绍如下. (1)简单算术操作指令 共有15条,包括加法.减法.比较.乘法等指令,这些指令在流水线的执行阶段都只需要一个时钟周期,而且实现思路很直观,与第4章添加逻辑操作指令类似,只需修改译码阶段的ID模块.执行阶段的EX模块,即可实现. (2)乘累加.乘累减指令 共有4条:乘累加m