bzoj 5306 [HAOI2018] 染色
推式子题
首先枚举有几种颜色选择恰好 \(s\) 次,可以得到一个式子:
\[\sum _{i = 0} ^ {\min(\frac n s,m )} \frac {\binom n {i \cdot s} \binom m i (i \cdot s) ! \cdot f_i \cdot (m-i)^{n - is}} {(s!) ^ i} \]
但是,\(f_i\) 不能单纯地等于 \(w_i\), 因为会重复计算,我们不能保证当前选择的 \(i\) 种颜色之外的颜色是否没有出现恰好 \(s\) 次的
发现对于一种染色方案而言,假设其中选择恰好 \(s\) 次的颜色数量为 \(i\),那么他在枚举到 \(j\) 种颜色出现 \(s\) 次是被算进去 \(\binom i j\) 次,所有被算进去的 \(f\) 值之和就是 \(\sum _{j = 0} ^ i (f_j \cdot \binom i j)\)
我们令 \(w_i = \sum _{j = 0} ^i (f_j \cdot \binom i j)\), 那么这样可以推出来 \(f\) 序列,并且把这里的 \(f\) 序列代入之前的式子就可以求出答案了
怎么求 \(f\) 呢?有两种方式
- 发现 \(\sum _{j = 0} ^ i \frac{f_j} {j !} \cdot \frac 1 {(i - j) !} = \frac {w_i} {i!}\),可以用多项式除法直接求得 \(\frac {f_j} {j!}\)
- 倒推。
$w_0 = f_0 $
\(w_1 = f_0 + f_1\)
\(w_2=f_0+2f_1+f_2\)
\(w_3=f_0+3f_1+3f_2+f_3\)
\(\dots\)
解得
\(f_0=w_0\)
\(f_1=w_1-w_0\)
\(f_2=w_2-2w_1+w_0\)
\(f_3=w_3-3w_2+3w_1-w_0\)
找规律,就是 \(f_i = \sum _{j = 0} ^ i (-1)^{i-j} \cdot \binom i j \cdot w_j = i! \cdot \sum_{j=0}^i \frac {(-1)^{i-j}} {(i-j)!} \cdot \frac {w_j} {j!}\)
卷积即可求出 \(f_i\)
惊讶地发现,\(1004535809\) 这个模数的原根也是 \(3\)
代码
// Copyright lzt
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<cmath>
#include<iostream>
#include<queue>
#include<string>
#include<ctime>
using namespace std;
typedef long long ll;
typedef std::pair<int, int> pii;
typedef long double ld;
typedef unsigned long long ull;
typedef std::pair<long long, long long> pll;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define rep(i, j, k) for (register int i = (int)(j); i <= (int)(k); i++)
#define rrep(i, j, k) for (register int i = (int)(j); i >= (int)(k); i--)
#define Debug(...) fprintf(stderr, __VA_ARGS__)
inline ll read() {
ll x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar();
}
while (ch <= '9' && ch >= '0') {
x = 10 * x + ch - '0';
ch = getchar();
}
return x * f;
}
const int mod = 1004535809;
const int GEN = 3;
namespace poly {
int alpha[2][400400], rev[400400], ntt_lst = -1;
inline int sum(int x, int y) {
x += y;
return x >= mod ? x - mod : x;
}
inline int sub(int x, int y) {
x -= y;
return x < 0 ? x + mod : x;
}
inline int ksm(int x, int p) {
int ret = 1;
while (p) {
if (p & 1) ret = ret * 1ll * x % mod;
x = x * 1ll * x % mod; p >>= 1;
}
return ret;
}
inline void ntt_init(int n) {
if (ntt_lst == n) return;
ntt_lst = n;
alpha[0][0] = alpha[1][0] = 1;
alpha[0][1] = ksm(GEN, (mod - 1) / n);
alpha[1][1] = ksm(alpha[0][1], mod - 2);
rep(i, 2, n) rep(x, 0, 1) alpha[x][i] = alpha[x][i - 1] * 1ll * alpha[x][1] % mod;
int nw = n >> 1;
rep(i, 1, n - 2) {
rev[i] = nw;
int j = n >> 1;
while (nw >= j) {
nw -= j;
j >>= 1;
}
nw += j;
}
}
inline void ntt(int *a, int n, bool f) {
ntt_init(n);
rep(i, 1, n - 2) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int i = 1; i < n; i <<= 1) {
for (int j = 0, off = n / (i << 1); j + i < n; j += (i << 1)) {
for (int k = j, cur = 0; k < j + i; k++, cur += off) {
int x = a[k], y = a[k + i] * 1ll * alpha[f][cur] % mod;
a[k] = sum(x, y); a[k + i] = sub(x, y);
}
}
}
if (f) {
int x = ksm(n, mod - 2);
rep(i, 0, n - 1) a[i] = a[i] * 1ll * x % mod;
}
}
inline void mul(int *a, int *b, int n) {
ntt(a, n, false);
ntt(b, n, false);
rep(i, 0, n - 1) a[i] = a[i] * 1ll * b[i] % mod;
ntt(a, n, true);
}
inline void mul(int *a, int n, int *b, int m, int *res, int mx_len = -1) {
static int A[400400], B[400400];
if (mx_len == -1) mx_len = n + m;
n = min(n, mx_len); m = min(m, mx_len);
int len = 1;
while (len < n + m) len <<= 1;
rep(i, 0, len - 1) {
A[i] = i < n ? a[i] : 0;
B[i] = i < m ? b[i] : 0;
}
mul(A, B, len);
memcpy(res, A, mx_len << 2);
}
}
const int maxn = 400400;
int n, m, s;
int w[maxn], a[maxn], b[maxn], f[maxn];
int fac[10000100], inv[10000100];
inline int C(int x, int y) {
return fac[x] * 1ll * inv[y] % mod * inv[x - y] % mod;
}
void work() {
n = read(), m = read(), s = read();
rep(i, 0, m) w[i] = read();
int lim = min(n / s, m), up = max(n, m);
fac[0] = 1;
rep(i, 1, up) fac[i] = fac[i - 1] * 1ll * i % mod;
inv[up] = poly::ksm(fac[up], mod - 2);
rrep(i, up - 1, 0) inv[i] = inv[i + 1] * 1ll * (i + 1) % mod;
rep(i, 0, lim) {
a[i] = w[i] * 1ll * inv[i] % mod;
if (i & 1) b[i] = (mod - inv[i]) % mod;
else b[i] = inv[i] % mod;
}
poly::mul(a, lim + 1, b, lim + 1, a);
rep(i, 0, lim) f[i] = fac[i] * 1ll * a[i] % mod;
int ans = 0;
rep(i, 0, lim) {
int nw = C(n, i * s) * 1ll * C(m, i) % mod * fac[i * s] % mod * poly::ksm(inv[s], i) % mod * f[i] % mod * poly::ksm(m - i, n - i * s) % mod;
ans = (ans + nw) % mod;
}
printf("%d\n", ans);
}
int main() {
#ifdef LZT
freopen("in", "r", stdin);
#endif
work();
#ifdef LZT
Debug("My Time: %.3lfms\n", (double)clock() / CLOCKS_PER_SEC);
#endif
}
原文地址:https://www.cnblogs.com/wawawa8/p/10158853.html