#导入数据 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() print(train_images.shape) print(train_images.dtype) print(train_labels.shape) print(test_images.shape) print(test_labels.shape) #图像转换 train_images = train_images.reshape((60000, 28*28)) train_images = train_images.astype(‘float32‘)/255 test_images = test_images.reshape((10000, 28*28)) test_images = test_images.astype(‘float32‘)/ 255 #构建网络 from keras import models from keras import layers network = models.Sequential() network.add(layers.Dense(512, activation = ‘relu‘, input_shape = (28*28, ))) network.add(layers.Dense(10, activation = ‘softmax‘)) network.compile(optimizer = ‘rmsprop‘, loss = ‘categorical_crossentropy‘, metrics = [‘accuracy‘]) #准备标签 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) #模型拟合 network.fit(train_images, train_labels, epochs=5, batch_size = 128) #测试模型 test_loss, test_acc = network.evaluate(test_images, test_labels) print(‘test_acc:‘, test_acc)
原文地址:https://www.cnblogs.com/wbloger/p/10197596.html
时间: 2024-11-09 10:22:46