Importance sampling

用蒙特卡洛求解积分时 (Monte Carlo 随机采样对目标积分函数做近似)

importance sampling func p(x)

p(x)值大的地方,Monte Carlo多采几次

值小的地方,少采样一些。

一起贡献MC的积分值

http://blog.sina.com.cn/s/blog_4e5740460100cw5b.html

link1

http://statweb.stanford.edu/~owen/mc/

对 GGX的importance的理解

ImportanceSampleGGX(float2 Xi, float Roughness, float3 N)

{

float a = Roughness * Roughness;
float Phi = 2 * PI * Xi.x;
float CosTheta = sqrt( (1 - Xi.y) / ( 1 + (a*a - 1) * Xi.y ) );
float SinTheta = sqrt( 1 - CosTheta * CosTheta );
float3 H;
H.x = SinTheta * cos( Phi );
H.y = SinTheta * sin( Phi );
H.z = CosTheta;
float3 UpVector = abs(N.z) < 0.999 ? float3(0,0,1) : float3(1,0,0);
float3 TangentX = normalize( cross( UpVector, N ) );
float3 TangentY = cross( N, TangentX );
// Tangent to world space
return TangentX * H.x + TangentY * H.y + N * H.z;

}

http://blog.tobias-franke.eu/2014/03/30/notes_on_importance_sampling.html

link2

链接里的代码,算得是极坐标下的p

我这段代码算得三维的H 换到xyz下面

但为什么p的值就变成H了呢 看着像微表面normal或者 半角向量

因为D就是这个定义 D就是微表面normal的分布函数

而微表面的normal朝各个方向 只有朝向l, v表征的h方向的有贡献,所以是h

整体看importanceSampleGGX的含义就是求解ggx了 公式 link2有提供

感觉,就是用个函数 积个PDF再弄个什么CDF不知道是什么 然后就求出来了 中间出现了P()

The NDF itself is defined as:

D(m)=α2π(cos2(n⋅m)(α2−1)+1)2(11)(11)D(m)=α2π(cos2?(n⋅m)(α2−1)+1)2

Just like above, we start out with the PDF for GGX:

p(θ,?)=α2π(cos2θ(α2−1)+1)2cosθsinθ(12)(12)p(θ,?)=α2π(cos2?θ(α2−1)+1)2cos?θsin?θ

As in the case of Phong, we create two functions for θθ and ??. First let’s create p(θ)p(θ):

integrate((a^2cos(t)sin(t))/(%pi((a^2−1)cos(t)^2+1)^2), p, 0, 2*%pi)

p(θ)=∫2π0p(θ,?)d?=2α2(cos2θ(α2−1)+1)2cosθsinθ(13)(13)p(θ)=∫02πp(θ,?)d?=2α2(cos2?θ(α2−1)+1)2cos?θsin?θ

The integration for ?? is the same as above, so we skip it and instead now create the CDF for p(θ)p(θ):

integrate((2a^2cos(t)sin(t))/((a^2−1)cos(t)^2+1)^2, t, 0, s)

P(sθ)=∫sθ0p(θ)dθ=(14)(14)P(sθ)=∫0sθp(θ)dθ=

2α2(1(2α4−4α2+2)cos2sθ+2α2−2−12α4−2α2)(15)(15)2α2(1(2α4−4α2+2)cos2?sθ+2α2−2−12α4−2α2)

Setting the CDF to a random variable and solving for ss yields:

solve(2a^2(1/((2a^4−4a^2+2)cos(s)^2+2a^2−2)−1/(2a^4−2a^2)) = x, s)

P(sθ)=ξθ(16)(16)P(sθ)=ξθ

sθ=cos−1(1−ξθ(α2−1)ξθ+1−−−−−−−−−−−−√)(17)(17)sθ=cos−1(1−ξθ(α2−1)ξθ+1)

A simple GLSL function to generate important directions looks like this:

vec2 importance_sample_ggx(vec2 xi)
{
  float phi = 2.0f * PI * xi.x;
  float theta = acos(sqrt((1.0f - xi.y)/
                          ((a*a - 1.0f) * xi.y + 1.0f)
                         ));
  return vec2(phi, theta);
}
时间: 2025-01-04 04:23:07

Importance sampling的相关文章

[Bayes] Hist &amp; line: Reject Sampling and Importance Sampling

吻合度蛮高,但不光滑. > L=10000 > K=135/64 > x=runif(L) > ind=(runif(L)<(20*x*(1-x)^3/K)) > hist(x[ind],probability=T, + xlab="x",ylab="Density",main="") /* 应用了平滑数据的核函数 */ > d=density(x[ind],from=0,to=1) // 只对标记为tr

转 如何理解 重要性采样(importance sampling)

分类: 我叫学术帖2011-03-25 13:22 3232人阅读 评论(4) 收藏 举报 图形 重要性采样是非常有意 思的一个方法.我们首先需要明确,这个方法是基于采样的,也就是基于所谓的蒙特卡洛法(Monte Carlo).蒙特卡洛法,本身是一个利用随机采样对一个目标函数做近似.例如求一个稀奇古怪的形状的面积,如果我们没有一个解析的表达方法,那么怎么做 呢?蒙特卡洛法告诉我们,你只要均匀的在一个包裹了这个形状的范围内随机撒点,并统计点在图形内的个数,那么当你撒的点很多的时候,面积可以近似为=

随机采样方法整理与讲解(MCMC、Gibbs Sampling等)

本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室

随机模拟的基本思想和常用采样方法(sampling)

转自:http://blog.csdn.net/xianlingmao/article/details/7768833 引入 我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来.这时就需要找一种方法求其近似解,并且有手段能测量出这种解的近似程度 (比如渐进性,上下限什么的) 随机模拟的基本思想 现在假设我们有一个矩形的区域R(大小已知),在这个区域中有一个不规则的区域M(即不能通过公式直接计算出来),现在要求取M的面积? 怎么求?近似的方法很多,例如:把这个不规则的区

蒙特卡洛采样之拒绝采样(Reject Sampling)

引子 蒙特卡洛(Monte Carlo)方法是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的数值计算方法.它的核心思想就是使用随机数(或更常见的伪随机数)来解决一些复杂的计算问题. 当所求解问题可以转化为某种随机分布的特征数(比如随机事件出现的概率,或者随机变量的期望值等)时,往往就可以考虑使用蒙特卡洛方法.通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解.这种方法多用于求解复杂的高

Candidate Sampling Sampled Softmax

[softmax分类器的加速器] https://www.tensorflow.org/api_docs/python/tf/nn/sampled_softmax_loss This is a faster way to train a softmax classifier over a huge number of classes. [分类的结果集过大,选取子集] https://www.tensorflow.org/api_guides/python/nn#Candidate_Samplin

deeplearning 源码收集

Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal) Torch – provides a Matlab-like environment for state-of-the-art machine learning algorithms in lua (from Ronan Collobert, Clement Farabet and Koray Kavu

常用的机器学习知识(点)

常用的机器学习&数据挖掘知识(点) 声明:想做机器学习&数据挖掘的学弟学妹,可以看看,转载请说明出处... 常用的机器学习知识(点) Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditi

常用的机器学习&amp;数据挖掘知识点

Basis(基础):MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率),JP(Joint Probability 联合概率),MP(Marginal Probabilit