转载:散列冲突的解决策略

冲突解决的策略

尽管散列函数的目标是使得冲突最少,但实际上冲突是无法避免的。因此,我们必须研究冲突解决策略。冲突解决技术可以分为两类:开散列方法( open hashing,也称为拉链法,separate chaining )和闭散列方法( closed hashing,也称为开地址方法,open addressing )。这两种方法的不同之处在于:开散列法把发生冲突的关键码存储在散列表主表之外,而闭散列法把发生冲突的关键码存储在表中另一个槽内。

开散列方法:

1、拉链法

开散列方法的一种简单形式是把散列表中的每个槽定义为一个链表的表头。散列到一个特定槽的所有记录都放到这个槽的链表中。图9-5说明了一个开散列的散列表,这个表中每一个槽存储一个记录和一个指向链表其余部分的指针。这7个数存储在有11个槽的散列表中,使用的散列函数是h(K) = K mod 11。数的插入顺序是77、7、110、95、14、75和62。有2个值散列到第0个槽,1个值散列到第3个槽,3个值散列到第7个槽,1个值散列到第9个槽。

2、桶式散列

桶式散列方法的基本思想是把一个文件的记录分为若干存储桶,每个存储桶包含一个或多个页块,一个存储桶内的各页块用指针连接起来,每个页块包含若干记录。散列函数h把关键码值K转换为存储桶号,即h(K)表示具有关键码值K的记录所在的存储桶号。 图9-6表示了一个具有B个存储桶的散列文件组织。有一个存储桶目录表,存放B个指针,每个存储桶一个,每个指针就是所对应存储桶的第一个页块的地址。

有些存储桶仅仅由一个页块组成,如下图中的1号存储桶。有的存储桶由多个页块组成,每一个页块的块头上有一个指向下一个页块的指针,例如,如下图中的第B-1号存储桶由b4,b5,b6三个页块组成,每个存储桶中最后一个页块的头上为空指针。

闭散列方法:

闭散列方法把所有记录直接存储在散列表中。每个记录关键码key有一个由散列函数计算出来的基位置,即h(key)。如果要插入一个关键码,而另一个记录已经占据了R的基位置(发生碰撞),那么就把R存储在表中的其它地址内,由冲突解决策略确定是哪个地址。

闭散列表解决冲突的基本思想是:当冲突发生时,使用某种方法为关键码K生成一个散列地址序列d0,d1,d2,... di ,...dm-1。其中d0=h(K)称为K的基地址地置( home position );所有di(0< i< m)是后继散列地址。当插入K时,若基地址上的结点已被别的数据元素占用,则按上述地址序列依次探查,将找到的第一个开放的空闲位置di作为K的存储位置;若所有后继散列地址都不空闲,说明该闭散列表已满,报告溢出。相应地,检索K时,将按同值的后继地址序列依次查找,检索成功时返回该位置di ;如果沿着探查序列检索时,遇到了开放的空闲地址,则说明表中没有待查的关键码。删除K时,也按同值的后继地址序列依次查找,查找到某个位置di具有该K值,则删除该位置di上的数据元素(删除操作实际上只是对该结点加以删除标记);如果遇到了开放的空闲地址,则说明表中没有待删除的关键码。因此,对于闭散列表来说,构造后继散列地址序列的方法,也就是处理冲突的方法。

形成探查的方法不同,所得到的解决冲突的方法也不同。下面是几种常见的构造方法。

1、线性探查法

将散列表看成是一个环形表,若在基地址d(即h(K)=d)发生冲突,则依次探查下述地址单元:d+1,d+2,......,M-1,0,1,......,d-1直到找到一个空闲地址或查找到关键码为key的结点为止。当然,若沿着该探查序列检索一遍之后,又回到了地址d,则无论是做插入操作还是做检索操作,都意味着失败。 用于简单线性探查的探查函数是: p(K,i) = i

例9.7 已知一组关键码为(26,36,41,38,44,15,68,12,06,51,25),散列表长度M= 15,用线性探查法解决冲突构造这组关键码的散列表。 因为n=11,利用除余法构造散列函数,选取小于M的最大质数P=13,则散列函数为:h(key) = key%13。按顺序插入各个结点: 26: h(26) = 0,36: h(36) = 10, 41: h(41) = 2,38: h(38) = 12, 44: h(44) = 5。 插入15时,其散列地址为2,由于2已被关键码为41的元素占用,故需进行探查。按顺序探查法,显然3为开放的空闲地址,故可将其放在3单元。类似地,68和12可分别放在4和13单元中.

2、二次探查法

二次探查法的基本思想是:生成的后继散列地址不是连续的,而是跳跃式的,以便为后续数据元素留下空间从而减少聚集。二次探查法的探查序列依次为:12,-12,22 ,-22,...等,也就是说,发生冲突时,将同义词来回散列在第一个地址的两端。求下一个开放地址的公式为:

3、随机探查法

理想的探查函数应当在探查序列中随机地从未访问过的槽中选择下一个位置,即探查序列应当是散列表位置的一个随机排列。但是,我们实际上不能随机地从探查序列中选择一个位置,因为在检索关键码的时候不能建立起同样的探查序列。然而,我们可以做一些类似于伪随机探查( pseudo-random probing )的事情。在伪随机探查中,探查序列中的第i个槽是(h(K) + ri) mod M,其中ri是1到M - 1之间数的“随机”数序列。所有插入和检索都使用相同的“随机”数。探查函数将是 p(K,i) = perm[i - 1], 这里perm是一个长度为M - 1的数组,它包含值从1到M – 1的随机序列。

4、双散列探查法

伪随机探查和二次探查都能消除基本聚集——即基地址不同的关键码,其探查序列的某些段重叠在一起——的问题。然而,如果两个关键码散列到同一个基地址,那么采用这两种方法还是得到同样的探查序列,仍然会产生聚集。这是因为伪随机探查和二次探查产生的探查序列只是基地址的函数,而不是原来关键码值的函数。这个问题称为二级聚集( secondary clustering )。

为了避免二级聚集,我们需要使得探查序列是原来关键码值的函数,而不是基位置的函数。双散列探查法利用第二个散列函数作为常数,每次跳过常数项,做线性探查。

 

四)散列的检索效率分析

我们可以根据完成一次操作,即插入、删除和检索操作,所需要的记录访问次数来衡量散列方法的性能。由于散列表的插入和删除操作都是基于检索进行的:在删除一条记录之前必须先找到该记录,因此删除一条记录之前需要的访问数等于成功检索到它需要的访问数;而插入一条记录时,必须找到探查序列的尾部(对于不考虑删除的情况,是尾部的空槽;对于考虑删除的情况,也要找到尾部,才能确定是否有重复记录),这等于对这条记录进行一次不成功的检索。因此,散列表的效率实质上还是平均检索长度,而且我们需要区别对待成功的检索与不成功的检索。

当散列表比较空的时候,所插入的记录比较容易插入到其空闲的基地址。如果散列表中的记录比较多,插入记录时,很可能要靠冲突解决策略来寻找探查序列中合适的另一个槽。而且,检索记录时,很多时候需要沿着探查序列逐个查找。随着散列表记录不断增加,越来越多的记录有可能放到离其基地址更远的地方。

根据这些讨论,我们可以看到散列方法预期的代价与负载因子α= N/M有关。其中,M是散列表存储空间大小,N是表中当前的记录数目。

开散列方法的效率最好,实际系统中使用的散列大多都是开散列。开散列方法非常简单、易于实现,它不会产生聚集现象(聚集导致更大的平均检索长度),删除也极为方便。大部分数据结构教材用比较多的篇幅来讨论闭散列方法,是因为闭散列需要考虑的因素更多,因而更需要精心设计,闭散列在某些受限制的系统中(例如不能使用堆栈分配新空间)有独到的用途。并且,经过精心设计的闭散列的效率比开散列稳定。

时间: 2024-08-09 06:21:20

转载:散列冲突的解决策略的相关文章

数据结构--开放定址法解决散列冲突时几种探测法的比较

开放定址法解决散列冲突时主要有线性探测法,平方探测法和双散列法,以下代码通过插入大量随机数,来统计几种探测法产生冲突的次数. #include<iostream> using namespace std; #define MinTablesize 10 #define Num 3000 typedef unsigned int Index; typedef Index Position; struct Hashtal; typedef struct Hashtal *Hashtable; in

数据结构--解决散列冲突,平方探测法

上代码: package com.itany.quadraticprobing; import java.util.LinkedList; import java.util.List; //使用平方探测的散列表 来解决散列时的冲突问题 public class QuadraticProbingHashTable<T> { private static final int DEFAULT_TABLE_SIZE=11; private HashEntry<T>[] array; pri

数据结构--解决散列冲突,分离链接法

散列表的实现经常叫做散列. 散列是一种用以常数平均时间运行插入.删除,和查找的技术.可是那些须要元素信息排序的树操作不会得到支持. 因此比如findMax,findMin以及排序后遍历这些操作都是散列不支持的. 假设当一个元素被插入时与已经插入的元素散列(比方散列表的数组序号,非常多元素插入到同一个数组序号中).那么就会产生一个冲突,这个冲突须要消除.解决冲突的办法有两种: 1 分离链接法 2  开放定址法(包含线性探測,平方探測,双散列) 两者都有可能须要再散列 以下说明分离链接法,上代码:

散列碰撞的解决方法——线性探测法(开放寻址法的一种)

function HashTable() { this.table = new Array(137);//137——官方比较好的设置数组大小的值 this.betterHash = betterHash; this.showDistro = showDistro; this.put = put; //this.get=get; } function betterHash(data) { var cons = 31;//此参数的设置是为了避免碰撞 var total = 0; for ( var

Java解决Hash(散列)冲突的四种方法--开放地址法(线性探测,二次探测,伪随机探测)、链地址法、再哈希、建立公共溢出区

最近时间有点紧,暂时先放参考链接了,待有时间在总结一下: 查了好多,这几篇博客写的真心好,互有优缺点,大家一个一个看就会明白了: 参考 1. 先看这个明白拉链法(链地址法),这个带源码,很好看懂,只不过是只讲了拉链法一种: 2. 再看这个比较全的,四种全讲了,链接,这篇比较形象,有图.但是这两篇都没有仔细介绍优缺点: 3. 最后看优缺点,点击这里: 原文地址:https://www.cnblogs.com/gjmhome/p/11372883.html

数据结构与算法分析java——散列

1. 散列的概念 散列方法的主要思想是根据结点的关键码值来确定其存储地址:以关键码值K为自变量,通过一定的函数关系h(K)(称为散列函数),计算出对应的函数值来,把这个值解释为结点的存储地址,将结点存入到此存储单元中.检索时,用同样的方法计算地址,然后到相应的单元里去取要找的结点.通过散列方法可以对结点进行快速检索.散列(hash,也称“哈希”)是一种重要的存储方式,也是一种常见的检索方法. 按散列存储方式构造的存储结构称为散列表(hash table).散列表中的一个位置称为槽(slot).散

散列(2)线性探测法和双重散列法

接上篇 散列的简要描述和链地址法 解决散列冲突的方法: 1. 线性探测法 如果我们能够预测将要存入表中元素的数目,而且我们有足够的内存空间可以容纳带有空闲空间的所有关键字,那么使用链地址法是不值得的.我们依靠空的存储空间解决冲突:设计表长M大于元素数目N,开放地址法,最简单的开放地址法是线性探测法: 初始化 该符号表的实现将元素保存到大小是元素个数两倍的散列表中. void HashTableInit(int max) { N = 0; M = 2*max; hash_table = new I

数据结构-散列查找

判断题 1.将M个元素存入用长度为S的数组表示的散列表,则该表的装填因子为M/S. T      F 2.在散列中,函数"插入"和"查找"具有同样的时间复杂度. T      F 3.在散列表中,所谓同义词就是被不同散列函数映射到同一地址的两个元素. T      F 4.采用平方探测冲突解决策略(hi(k)=(H(k)+i2)%11, 注意:不是±i2),将一批散列值均等于2的对象连续插入一个大小为11的散列表中,那么第4个对象一定位于下标为0的位置. T    

散列之HashTable学习

1,什么是散列? 举个例子,在日常生活中,你将日常用品都放在固定的位置,当你下次需要该东西时,直接去该地方取它.这个过程就相当于散列查找. 若将它们随意杂乱无章地存放,当需要某件东西时,只能一个地方一个地方地逐一查找,这就相当于顺序查找. 在数据结构中,数组就相当于一张散列表,因为可以根据数组下标索引直接取得该位置上的元素. 2,什么情况下用到散列? 由于散列查找相对于其它查找而言,理论上只需要O(1)时间就可以找到某元素,因此,当查找是主要的任务时,散列就是实现词典的一种很好的选择. 3,散列