论文笔记之:Conditional Generative Adversarial Nets

Conditional Generative Adversarial Nets

arXiv 2014 

    本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加“激烈”的对抗,从而达到更好的结果。

  众所周知,GANs 是一个 minmax 的过程:

  而本文通过引入 条件 y,从而将优化的目标函数变成了:

  下图给出了条件产生式对抗网络的结构示意图:

  是的,整个过程就是看起来的这么简单,粗暴,有效。

  实验部分,作者在 Mnist 数据集上进行了实验:

  

  然后是,给图像贴标签:



  总结

时间: 2024-11-03 05:41:11

论文笔记之:Conditional Generative Adversarial Nets的相关文章

论文笔记之:Generative Adversarial Nets

Generative Adversarial Nets NIPS 2014 本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分布:还有一个判别式模型 D 可以预测来自训练样本 而不是 G 的样本的概率.训练 G 的目的是让 D 尽可能的犯错误,让其无法判断一个图像是产生的,还是来自训练样本.这个框架对应了

Generative Adversarial Nets[pix2pix]

本文来自<Image-to-Image Translation with Conditional Adversarial Networks>,是Phillip Isola与朱俊彦等人的作品,时间线为2016年11月. 作者调研了条件对抗网络,将其作为一种通用的解决image-to-image变换方法.这些网络不止用来学习从输入图像到输出图像的映射,同时学习一个loss函数去训练这个映射.这让传统需要各种不同loss函数的问题变成了可以采用统一方法来解决成为可能.作者发现这种方法在基于标签map

论文阅读:Single Image Dehazing via Conditional Generative Adversarial Network

Single Image Dehazing via Conditional Generative Adversarial Network Runde Li? Jinshan Pan? Zechao Li Jinhui Tang? School of Computer Science and Engineering, Nanjing University of Science and Technology 研究方向: Dehazing,cGAN motivation 对于直接通过算法复原有雾的图像

(转)Deep Learning Research Review Week 1: Generative Adversarial Nets

Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa

Generative Adversarial Nets[Wasserstein GAN]

本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是半监督学习.当我们说到学习一个概率分布,人们传统的意思是学习一个概率密度.这通常是通过定义一个参数化概率密度\((P_{\theta})_{\theta\in R^d}\)家族,然后基于收集的数据进行最大似然:如果当前有真实样本\(\{x^{(i)}\}_{i=1}^m\),那么是问题转换成: \[\unde

Generative Adversarial Nets[Vanilla]

引言中已经较为详细的介绍了GAN的理论基础和模型本身的原理.这里主要是研读Goodfellow的第一篇GAN论文. 0. 对抗网络 如引言中所述,对抗网络其实就是一个零和游戏中的2人最小最大游戏,主要就是为了处理下面的函数\(V(G,D)\): 在实现过程中,如果将D和G都写入同一个循环中,即迭代一次D,迭代一次G,这种情况会让在有限的数据集基础上会导致过拟合.所以Goodfellow推荐:先训练D模型K步,然后再训练G一步.这样可以让D很好的接近最优解,并且让G改变的足够慢. 图0.1 GAN

Generative Adversarial Nets[LSGAN]

0 背景 在这之前大家在训练GAN的时候,使用的loss函数都是sigmoid_cross_entropy_loss函数,然而xudon mao等人发现当使用伪造样本去更新生成器(且此时伪造样本也被判别器判为对的时候)会导致梯度消失的问题.虽然此时伪造样本仍然离真实样本分布距离还挺远.也就是之前的损失函数虽然可以判别是真假,可是对于人肉眼来说,还是违和感太强了,也就是生成的图像质量骗得过机器,却骗不过人. 图0.1 两种损失函数的不同行为 上图中加号表示假样本,圈表示真样本,五角星表示用于更新生

Generative Adversarial Nets[EBGAN]

0. 背景 Junbo Zhao等人提出的"基于能量的GAN"网络,其将判别器视为一个能量函数而不需要明显的概率解释,该函数可以是一个可训练的损失函数.能量函数是将靠近真实数据流形的区域视为低能量区域,而远离的视为高能量区域.和"概率GAN"相似,训练中,生成器会尽可能生成最小能量时候的伪造样本,而此时判别器会被赋值为高能量(因为是伪造的).通过将判别器看成一个能量函数,就可以使用更多更广泛的网络结构和损失函数,而不只是logistic输出的二值分类器.其中Junb

Generative Adversarial Nets——解析

摘要 本文提出了一个通过对抗过程来预测产生式模型的新框架.在新框架中我们同时训练两个模型:一个用来获得数据分布的生成模型G,和一个用来估计样本来自训练数据而不是G的概率的判别模型D,G的训练过程是最大化D产生错误的概率,让其无法判断一个图像是由生成模型产生的,还是来自训练样本.这个框架相当于一个极小化极大的双方博弈.在任意函数G 和D 的空间中存在唯一的解,其中G恢复训练数据分布,并且D处处都等于12. 在G和D 由多层感知器定义的情况下,整个系统可以用反向传播进行训练.在训练或生成样本期间不需