浅析Trafodion体系结构

浅析Trafodion体系结构

Trafodion简介

Trafodion是一个构建在Hadoop/HBase基础之上的关系型数据库,它完全开源免费。Trafodion能够完整地支持ANSI SQL,并且提供ACID事务保证。和传统关系数据库不同的地方在于,Trafodion利用底层Hadoop的横向扩展能力,可以提供极高的扩展性。而传统数据库,比如MySQL,在数据量达到P级别的时候就很难处理。而Trafodion却可以借助HBase的扩展性,仅通过增加普通Linux服务器就可以增加计算和存储能力,进而支持大数据应用。

比如原来使用MySQL的用户,如果数据量持续增加,往往需要采用前后端cache,分库分表,读写分离等技术。但是这些技术带来的弊端也很多。比如分库分表的构架下,不同分库之间无法执行join操作。采用这些复杂技术后,系统结构复杂,维护和开发成本提高。这是很多客户正在面临的问题。

而从使用开发的角度来看,Trafodion和MySQL是完全一样的,他们同样是关系型数据库,基本的功能完全一致。因此一个经典的LAMP网络应用也可以轻松地用LATP(Linux, Apache, Trafodion, PHP) 搭建。而采用Trafodion,当业务扩展时,通过增加节点就可以应付不断增加的数据量,应用程序无需做任何修改,也无需考虑复杂的分库分表,读写分离等技术。这样就极大地降低了系统的复杂度。

这只是Trafodion的可能应用之一,Trafodion还是一个非常适合的实时大数据分析平台。因为它不仅可以支持实时分析,而且能够支持实时数据写入,比如每秒上万条的随机数据插入。这是构建实时分析所必备的能力。Stinger或者Impala虽然可以提供实时查询,但去无法支持实时的数据插入。

比如交通实时分析,利用Stinger/Impala等技术,虽然查询和分析可以在1分钟内完成,但是数据却只能定期载入,如果1小时一次,那么分析的数据样本是1小时前的数据,其分析结果也失去了时效性。比如,用户已经在那里堵车堵了了1个小时。

关于Trafodion的使用场景读者可以参阅其他介绍Trafodion的系列文章。本文简要介绍Trafodion的技术体系结构,帮助读者基本了解Trafodion内部运作的原理。

读者还可以参考https://wiki.trafodion.org/wiki/index.php/Architecture了解Trafodion的技术构架。

总体结构

Trafodion的体系结构可以看作三层:ODBC接入层;SQL编译执行层;数据访问和存储层。其总体结构如下所示:

客户端应用通过JDBC/ODBC访问Trafodion。客户连接由Trafodion的接入层负责。接入层为每一个客户端连接分配一个master执行器,master负责用户连接所有query请求的执行和结果返回。对于简单的Query,Master进程本身就充当SQL执行层;复杂的query,访问大量数据和进行复杂运算的情况下,Master会启动一系列的ESP(Executor Server Processes)进程进行大规模并发执行。ESP进程是可以常驻内存的,以避免启动开销,但如果长期处于空闲状态ESP进程会退出,释放资源。每个ESP将执行结果返回给Master,由Master汇总并将最终结果返回给客户端。当Master或者ESP需要访问数据层的时候,会通过DTM来进行事务管理,在DTM(分布式事务管理器)的控制下调用HBase的客户端API进行数据的读写。下面分别介绍每一层的更多细节。

Trafodion的接入层

接入层的主要组件有两个:DCSMaster和MXOSRVR。DCS Master进程运行在Trafodion集群的单个节点上,负责监听客户端的连接请求。当收到请求后,DCSMaster根据集群的工作负载平衡情况,选定集群中一个节点上的MXOSRVR作为客户端的执行代理。DCS Master将选定的MXOSRVR信息返回客户端,收到信息后,客户端直接和MXOSRVR进行连接,此后客户端的所有请求都由该MXOSRVR负责处理。类似Oracle的Dedicated 模式。

当多个客户端请求连接时,DCSMaster会平均地将客户端连接到不同的MXOSRVR,从而均衡地利用集群中的每个计算节点。而且每个客户端都有一个单独的MXOSRVR负责其后续计算请求的执行,以保证快速的响应客户query。一些数据库系统只有单一的ODBC接入点,高并发的情况下,就会出现排队现象,而采用了以上的模型后,每个客户端都由一个接入点唯一负责,而且这些接入点平均分配在集群的各个节点,可以充分发挥每台计算节点的能力。

为了降低延迟,Trafodion启动的时候会预先在每个节点启动一定数量的MXOSRVR进程。这样客户端连接请求被处理时,就不需要启动新MXOSRVR进程的开销。但是Trafodion也不会预先启动非常多的MXOSRVR,以免在连接请求不多的情况下浪费资源。当客户请求数量大于预先启动的MXOSRVR进程数目时,DCS Master再为新的连接请求启动新的MXOSRVR,以便满足高并发的客户连接。

DCS Master是所有客户端的唯一接入点,因此Trafodion为其提供了HA保护。当DCS Master故障退出,或者其所在节点崩溃时,Trafodion会在集群的其他健康节点上重新启动一个新的DCS Master,并利用floating IP的技术保证客户端可以继续执行连接。整个过程对客户端完全透明。

Trafodion的HA机制非常复杂,需要一篇单独的文章来详细介绍,这里就不再展开叙述。

SQL编译执行层

客户请求被接受后,每个ODBC客户端都有一个单独的MXOSRVR负责。该MXOSRVR就是master进程,负责用户query的执行。一条用户query的执行流程大致如下:

首先,MXOSRVR会调用compiler模块对SQL语句进行编译和优化。Trafodion拥有一个非常成熟的SQL编译器,经过了20年的不断增强和改进,形成了一个强大的基于成本的优化器,能够生成用户SQL的最佳执行计划,比如最优的join表顺序。此外,编译器拥有一个执行计划缓存,如果SQL的执行计划已经在缓存中,则立即返回该计划,节省了编译的开销。

执行计划会指导Master如何执行用户query。对于简单的query,执行计划仅仅需要master本身即可完成。对于复杂的query,master根据计划会启动多个ESP进程,并发地执行query。Trafodion的执行器是一个MPP构架的并发处理模型。它的多数执行操作符都支持并发,比如并发join,并发aggregation等等。

Trafodion编译器

Trafodion编译器的主要职责就是将SQL文本解析为一个最优的执行计划。它主要包括以下几部分:

Parser:parser采用bison对SQL文本进行文法分析,生成语法树。Parser也负责维护执行计划缓存。如果能够在这一步决定输入的SQL文本在缓存中,则直接返回执行计划。

Binder:Binder对语法树进一步进行分析,类似程序编译器的语义分析,对语法合格的SQL进一步进行检查。比如检查Table是否存在,column数据类型是否匹配等。Binder还维护执行计划缓存。

Normalizer:Normalizer对Binder生成的语法树进行逻辑优化。实施传统意义上的基于规则的优化,比如将查询条件下推;将子查询修改为semi-join;将DISTINCT转换为groupby等等。

Analyzer:Analyzer对语法树进行一些补充,以帮助优化器判断是否可以运用某些规则。比如对于底层数据分区的访问可以有多种方式,可以直接从base table访问,或者从索引访问。Analyzer收集数据表的索引情况,添加进语法树,以便优化器做选择。

Optimizer:可以说这是Trafodion最值得骄傲和关注的一个核心技术。优化器采用Cascades框架,是一个基于成本的优化器,而且Cascades框架非常易于扩展,开发人员可以添加新的规则来扩展新的优化方法。优化器实际上可以看作一个对问题空间的搜索过程,对于同一条query,通过规则,可以生成很多等价的执行计划。举一个例子:简单的规则,比如Ajoin B => B join A,应用该规则就会生成两个不同的等价计划。

优化器对语法树应用各种规则,生成不同的执行计划,形成一个搜索空间。然后在这个搜索空间内通过比较每个计划的成本,来找出最优的方案。由于规则众多,等价的执行计划数量会指数级增长,导致搜索空间非常巨大,因此采用穷举法一条一条的进行比较是不现实的。传统的优化器框架比如 Dynamic programming是自底向上的策略,很难缩小搜索空间,而Cascades采用自顶向下的搜索策略,可以很方便地利用branch-and-bound算法,将一些分支进行裁剪,即不需要再深入分支进行优化。比如某分支的cost已经超出当前的总cost,则对于该分支就不再进行进一步搜索。

Cascades还拥有MEMO数据结构,能够记忆曾经搜索过的分支,这进一步增加了搜索的效率。

此外Trafodion优化器还在多年的实践中总结出了很多的经验式规则(heuristics ),能够进一步减小搜索空间。

最后优化器支持multi-pass的模式,对于简单的query,先enable非常少量的规则,将搜索空间限定在很小范围,因此可以高效地找到最优解;对于复杂query,进入第二个pass,enable所有的规则,进一步找出更好的执行计划。

Pre-Code generator:optimizer选出了最优的执行计划,在生成物理执行计划之前,pre-codegenerator再应用一些物理优化策略,比如常数折叠,举例如下:假设Where条件为a=5 and b=a。 可以将b=a进一步替换为b=5。

Generator:最后Generator将执行计划翻译为可以被Trafodion执行器执行的物理执行计划。这里有一个重要步骤,优化标量表达式。所谓标量表达式,即其解析结果为标量的表达式,比如a+b+c等。Trafodion利用LLVM将多数标量表达式编译成运行时的机器代码,从而进一步提高了执行速度,类似JIT将部分javabytecode编译为机器指令以便加速java程序的执行。

成本模块:Trafodion编译器还有一个经过长期调节和校准的cost成本模块,对各种SQL operator的成本进行估计。成本计算需要对存放在表内数据的分布情况有所了解,这是依赖对表数据进行扫描和采样统计计算出的直方图来支持。成本模块从直方图中得到数据的分布情况,计算出Cardinality。它还综合考虑了CPU,内存消耗,消息通讯和磁盘IO等条件为各个SQL操作算子计算出一个cost vector,提供比较准确的成本估计。

以上各个系统组件协同工作,如上图所示,SQL语句经过parser和Normalizer的分析之后,输入优化器进行基于成本的优化;成本估计模块通过直方图获得数据分布,然后根据每个操作符自身的特点,进行成本估计,将成本输入优化器。根据这些输入,优化器最终生成一个最优的执行计划。

Trafodion执行器

Trafodion的执行器是一个MPP构架的并发执行器。它的工作模式是数据驱动,因此一旦有数据就绪,就可以返回用户,而无需等待整个query完全结束执行,提高了用户响应速度。执行器由不同的SQL操作符组成,数据在各个操作符之间通过IPC流动,无需将中间计算结果保存到磁盘。如果中间数据太大,超过了RAM的容量,操作符会将数据overflow到磁盘上,因此Trafodion的query执行不受物理内存大小限制。

并发执行

Trafodion执行器最大的优点是极佳的并发能力。多数SQL操作算子都有并发执行的能力,包括GROUPBY,JOIN,INSERT都支持并发执行。

这里举一个小例子来说明Trafodion如何并发执行一个简单的sum(col1)聚集操作:master会在集群的每个节点启动一个ESP进程,该进程负责对存储在该节点上的数据分区进行sum聚集操作。多个ESP同时并发执行,将最终结果发还给master,由master汇总。对于聚集,Trafodion还可以将该操作下推到数据访问层执行,而不需要将数据分区的每一行数据返回给ESP,由ESP逐一统计,而是由底层的数据访问层进行统计操作,仅仅将聚集结果发给ESP,ESP再返回给master。

再看看Trafodion的Join。Trafodion支持所有的join类型,内连接,外连接,non-equijoin,semi-join,全连接等等。在Join的实现方式上,支持nestloop join,merge join和hashjoin。无论哪一种join算法,都有并发执行的能力。Trafodion支持多种并发join方法,由优化器选择最优的一种。

首先介绍大家最熟悉的两种并发join算法,即broadcast和repartition。

broadcast parallel join(hash join)

broadcast类型的join中,一个表比较小,可以完全放入单个节点的内存中。在这种情况下Trafodion会将小表广播到所有节点上。该并发执行方法用于hashjoin。每个节点上的ESP将小表放入内存并建立hash表,然后顺序读入本节点上的大表分区,执行hashjoin操作。

repartition parallel join

repartition类型的join中,两个表都很大,无法放入单机内存。这种情况下,优化器生成的执行计划会自动派生两层ESP,第一层读取数据后按照join column进行repartition操作,将两个Join表的数据重新分区,将join column值相同的数据汇集到同一个第二层ESP中执行join操作。然后,所有的第二层ESP将Join结果返回master进行汇总。

以上两种在Hadoop的应用中经常被使用到,被称为mapper join和reducer join。这两种并发join方法都需要非常大的网络开销和内存开销。Trafodion优化器能够智能地在可能的情况下选择以下几种并发join方法:

Matching PartitionsJoin

如果参加join的两张表都是按照join column分区的,那么直接可以在各个节点的ESP中执行本地join,因为肯定不需要其他节点上的数据。这是最理想的情况。

Inner Child ParallelAccess (for Nested Join)

这种方法只适用于Nest Loop Join。TblA作为outer table;TblB作为inner table。TblA有两个分区,因此启动2个ESP,ESP1从TblA的分区1逐行读取数据,然后逐一从TblB读取相应的数据行进行连接操作;同理ESP2也做同样的工作。这种类型的join比broadcast的方法节约内存开销,但多个ESP可能会竞争读取outer table。但可以支持非等值join。

Trafodion的MPP并发执行器还有很多其他的先进技术,比如HP的专利MDAM,Adaptive Segmentation,Skewbuster等都可以显著加速query的执行效率降低延迟,从而达到sub-second的实时响应。限于篇幅,MDAM等技术在这里就不展开叙述,Trafodion团队将陆续推出专题技术文章来单独介绍这些专利技术。

数据访问层

当执行器对底层数据库表进行读写时,就需要调用数据访问层的服务。Trafodion的数据都存放在HBaseTable中。HBase本身支持对数据的随机读写,但是不支持ACID事务处理。因此数据访问层必须和DTM(分布式事务管理器)相互配合,实现有事务保护的读写。事务处理在下一个小结详细介绍。

DTM对HBase的API进行了封装,添加了必要的事务处理支持。其余的读写逻辑和原生的HBase读写是一样的。因此如果不考虑事务,数据访问层就是一个标准的HBase客户端,通过HBaseclient API访问HBase。HBase是Trafodion数据访问和存储层的核心。也是Trafodion区别于传统数据库的最重要的地方。借助于HBase,Trafodion也可以提供极佳的水平扩展能力,同时具有很强的可靠性,而这些能力是传统数据库所不具备的。

Trafodion支持的三种底层数据库表:Trafodion表,Hive表和HBase表。数据访问层需要负责对这三种存储类型的访问控制。

Trafodion表

Trafodion表是用户用Trafodion的DDL语句直接创建的数据库表。在底层是一张HBase表,因此从Trafodion表到HBaseTable需要一定的映射和编码。

映射

即如何将Trafodion数据库表映射到HBase Table。我们考虑如下这个DDL创建的Trafodion表:

create table sales.item(item_id int not null,

item_name char(10) ,

primary key (item_id));

首先是如何将关系数据库的schame+table_name映射到HBaseTable。这个映射原则非常简单,即一个trafodion表在HBase中存储的表名为。例子中的item表在HBase中被映射为TRAFODION.SALES.ITEM这个HBaseTable。

其次是Trafodion表的各个column如何映射到HBase的存储模式中。HBase的表内部有ColumnFamily,每个ColumnFamily中可以有任意多的ColumnQualifier,每一个行有一个rowkey,和一个timestamp。这四个维度定义了一个数据Cell。那么Trafodion的二维表如何映射到HBase这样的存储模型中呢?

Trafodion将表的主键列组合起来作为HBase的rowkey。Column映射到HBase的columnqualifier,而timestamp被用作事务管理的时间戳。在目前的release中,所有列数据都存放在同一个ColumnFamily中,支持多ColumnFamily已经在Trafodion的蓝图中,因此未来这个映射会有所改变。

编码

HBase存储的数据是没有数据类型的。Trafodion的表却支持不同的SQL数据类型,比如CHAR型,即按字符串进行存储,”1”被编码为ASCII码0x41。如果SQL数据类型为INTEGER,在存储到HBase中时,Trafodion会直接写入二进制数0x00,0x00,0x00,0x01,占用4个byte;相应的LONG型占8个byte。

Trafodion会自动进行类型处理,无需应用程序自己进行编解码的工作。

数据分区

HBase会自动通过split技术对数据进行分区,但是某些情况下,比如时间序列数据顺序插入的情况下,大量的数据读写会集中在某个单一Region上,从而使得单台RegionServer的负载高于其他的RegionServer。Trafodion支持slatedpartition功能,在创建表的时候通过指定SALT关键字,Trafodion会自动为rowkey加入hash前缀,对表进行pre-split,保证平均地将数据分布在集群中。用户也可以不指定SALT关键字,而依赖底层HBase自动进行数据分区。

访问原生HBase表

Trafodion也可以直接访问原生HBase表,提供两种访问方式:Cell-Per-Row和Rowwise Per-Row。

通过Cell-Per-Row方式访问HBase表,每一个HBase的Cell会作为SQL结果集中的一行数据。通过Rowwise Per-Row模式访问,每一行HBase数据作为SQL结果集的一行数据。

假设Table1有2行数据,每行两个Cell:[(row1, CF1:Col1, v1), (row1,CF1:Col2, v2) , (row2, CF1:Col1, d1), (row2,CF1:Col2, d2)]。

Cell-Per-Row访问:

select * from hbase.”_CELL_”.”table1”

返回4行数据

value

(row1, CF1:Col1, v1)

(row1,CF1:Col2, v2)

(row2, CF1:Col1, d1)

(row2, CF1:Col2, d2)

通过Rowwise-Per-Row方式访问:

select * from hbase.”_ROW_”.”table1”;

返回两行数据

rowkey

value

row1

CF1:Col1:v1 CF1:Col2:v2

row2

CF1:Col1:d1 CF1:Col2:d2

具体使用方法可以参考Trafodion的SQL Manual。

访问原生Hive表

Trafodion可以直接访问原生Hive表。采用特殊的schema “hive”,用户直接使用SQL语句即可访问。比如

select * fromhive.hive.table1;

SQL引擎会识别”hive.hive”这个特殊的schema,读取Hive的metastore获取table1的元数据,然后直接通过libhdfs访问HDFS上的Hive表数据。因此绕过了DTM。所以,对于原生Hive表的访问,Trafodion不提供事务保护。

关于事务

Trafodion的威尔士本意即事务,因此事务处理是Trafodion非常重要的一个方面。事务是一系列query的组合。一个事务由若干操作构成,并由begin开始,由commit或者abort结束。

Trafodion采用两阶段提交协议来保证分布式事务的完整性。每个节点均运行TM进程,所有的TM都是peerto peer对等的,而避免了单一的事务管理器的扩展性问题和SinglePoint of Failure问题。高并发情况下,所有的活跃事务由不同节点上的TM分别管理,提供了很高的扩展能力。

原生的HBase本身仅支持单行的ACID事务保证,Trafodion基于开源项目hbase-trx(https://github.com/hbase-trx/hbase-transactional-tableindexed)开发了目前版本的Transactionon HBase机制。提供了跨行跨表的ACID保证。hbase-trx采用MVCC机制,提供SnapShotIsolation事务隔离级别。原生的hbase-trx仅支持HBase0.94,且采用了侵入式的开发方法,大量修改了HBase的基本代码。Trafodion团队吸取了hbase-trx的基本思路,利用HBase协处理器重新开发了hbase-trx,并支持HBase0.98版本。并改进了日志实现,能够保证各种failure情况下数据的安全性。

目前TrafodionDTM团队正在和中国科学院计算所合作开发新的Transactionon HBase算法Stateful-stateless Concurrency Control (SSCC)。关于SSCC的原理,读者可以进一步参考开源项目Domino:https://github.com/domino-succ/domino,预计将于TrafodionR1.2版本开始提供产品使用。SSCC提供比SnapShot Isolation更高级的隔离级别,同时对无状态写操作有很高效的支持,提供更高的并发度。无状态写在web应用中非常普遍,采用这一机制,Trafodion可以高效地为相关的web应用提供强大的支持。

小结

Trafodion是一个复杂的大系统,一篇短文无论如何也不可能完全说明其内部运作原理。笔者仅希望用最简单的描述给各位读者一个大体的概念,作为一个开源项目,Trafodion欢迎各位研读源代码,并共同改进。

通过本文,希望读者认同以下几个关键点:

·Trafodion有一个成熟的SQL编译器,能够进行基于成本的优化

·Trafodion有一个先进的MPP并发执行引擎

·Trafodion有一个创新的Transaction实现

·Trafodion有一个成熟的ODBC/JDBC接入层

·Trafodion构架在HBase之上,继承了所有HBase的优点。为用户提供极佳的水平扩展性

本文没有涉及到的技术话题还有很多,比如Trafodion的HA实现,安全体系,NoSQL支持等。Trafodion团队会努力完善文档,也欢迎各位读者能够下载Trafodion源代码进行使用和学习,并贡献您的理解和分析。

原文地址:https://www.cnblogs.com/kevinX/p/8478536.html

时间: 2024-10-16 09:17:48

浅析Trafodion体系结构的相关文章

MySQL体系结构浅析

MySQL体系结构浅析 从整体上来说,MySQL的体系结构可以分为三层.最上层的负责处理客户端的连接请求.包括连接处理.授权认证.安全等:第二层是MySQL的核心层,作为一个数据库,最基本,最核心的功能都在这一层.这一层的主要功能有,查询.分析优化和缓存:第三层则包含了存储引擎.一般来说,存储引擎负责数据的存放和提取.存储引擎更加面向底层,负责和底层的文件系统的交互. MySQL的特色主要体现在第三层,MySQL的存储引擎为插件式存储引擎,可以按需选择合适自己业务的存储引擎. 下面简要介绍一下M

jvm的内部体系结构浅析--转

jvm全称是Java Virtual Machine(java虚拟机).它之所以被称之为是"虚拟"的,就是因为它仅仅是由一个规范来定义的抽象计算机.我们平时经常使用的Sun HotSpot虚拟机只是其中一个具体的实现(另外还有BEA JRockit.IBM J9等等虚拟机).在实际的计算机上通过软件来实现一个虚拟计算机.与VMWare等类似软件不同,你是看不到jvm的,它存在于内存. 当启动一个Java程序时,一个虚拟机实例也就诞生了.当该程序关闭退出,这个虚拟机实例也就随之消亡.如果

浅析理解Oracle数据库体系结构和存储结构

一.Oracle体系结构 个人比喻帮助理解:类似于图书馆,去图书馆的客户(用户进程和服务进程等)需要调取资料,求助于图书管理员(实例)进入图书分区(数据库)进行资料查找.[如果比喻不当,欢迎指正,尽请谅解] - 第一部分是实例部分(为用户提供服务,管理数据库): 主要理解分成两个主要部分: (1)内存结构:(2)后台进程:与数据库进行交互 - 第二部分是数据库部分物理结构:(为实例提供服务,处理数据文件) 主要文件:数据文件,控制文件,重做日志文件 其他文件:归档日志文件,参数文件,口令文件等

软件体系结构六大质量属性-浅析淘宝网

淘宝网质量属性描述 以淘宝网为例,进行描绘质量属性的六个常见属性场景. 1.可用性 可用性与系统故障及其后果相关.当系统不再提供其规范中所说的服务时,就出现了系统故障.系统用户可以观察到此类故障.可用性是指系统正常运行时间的比例,是通过两次故障之间的时间长度或在系统崩溃情况下能够恢复正常运行的速度来衡量的. 刺激源:  用户 刺激:      很多用户进行同时访问,系统访问量过大因出现崩溃 制品:      系统 环境:      正常操作 响应:      系统检测到事件:记录故障,通知系统

浅析WebGIS

浅析WebGIS 摘要:随着网络的发展,利用Web公布信息越来越普及化.而地理信息系统(GIS)与网络的结合就产生了万维网地理信息系统(WebGIS),它引起了地理信息公布的新的变革,对实现GIS信息的共享提供了技术保障.本文阐述了WebGIS的基本概念,说明了WebGIS的体系结构,着重讨论了WebGIS基本的构建方式,叙述了WebGIS的展望.        关键词:GIS  WebGIS  构造方式 1           GIS和WebGIS1.1     地理信息系统(GIS) 地理信

java语言安全机制浅析

java通过所谓的沙箱安全模型保证了其安全性,下面我们就来看看java提供的安全沙箱机制. 组成沙箱的基本组件如下: 1.类装载器结构: 2.class文件检验器: 3.内置于java虚拟机(及语言)的安全特性: 4.安全管理器及java API. 一.类装载器体系结构 1.防止恶意代码去干涉善意的代码. 这是通过为不同类加载器提供不同的命名空间来实现的,在java虚拟机中,在同一个命名空间内的类可以直接进行交互,而不同的命名空间中类甚至不能觉察彼此的存在,除非显式地提供允许它们交互的机制. 2

(设计模式之一)浅析简单工厂模式

简单工厂模式 举个两个例子: 我输入两个数字和(+ - * /)其中一个符号,计算出两个数的结果. 饲养员让(狗 猫 鸟 猪)其中一个动物 叫 这里就是一个简单的工厂模式, 用户只需要提供他需要的接口,而不需要知道具体的实现 工厂判断用户提供的接口,创建对应的子类对象, 返回父类变量给用户(这里涉及里氏替换原则:声明父类变量替换子类对象) 当后面追加新的操作类例如:求根类  求平方类 , 从数据安全角度: 只需要创建新的类继承于Operation抽象类 ,从而不影响其他操作类(+ - * /),

jvm结构浅析

jvm全称是Java Virtual Machine(java虚拟机).它之所以被称之为是"虚拟"的,就是因为它仅仅是由一个规范来定义的抽象计算机.我们平时经常使用的Sun HotSpot虚拟机只是其中一个具体的实现(另外还有BEA JRockit.IBM J9等等虚拟机).在实际的计算机上通过软件来实现一个虚拟计算机.与VMWare等类似软件不同,你是看不到jvm的,它存在于内存. 当启动一个Java程序时,一个虚拟机实例也就诞生了.当该程序关闭退出,这个虚拟机实例也就随之消亡.如果

GNU-ld链接脚本浅析

http://blogold.chinaunix.net/u/30686/showart_357384.html 本文乃转载, 我在其基础上做了少量修改. 原作者的E-mail是[email protected].ac.cn. 完成于2005.11.5-2005.11.8 0. Contents 1. 概论2. 基本概念3. 脚本格式4. 简单例子5. 简单脚本命令6. 对符号的赋值7. SECTIONS命令8. MEMORY命令9. PHDRS命令10. VERSION命令11. 脚本内的表达