稀疏矩阵三元组快速转置(转poklau123写的很清楚)

关于稀疏矩阵的快速转置法,首先得明白其是通过对三元表进行转置。如果误以为是对矩阵进行转置,毫无疑问就算你想破脑袋也想不出个所以然,别陷入死胡同了!

对于一个三元表,行为i,列为j,值为v。需将其i与j的值对调才能得到新的三元表,但是如果直接进行转换,得到的新的三元表的顺序是混乱的,不符合三元表的规则。所以,课本首先介绍了一个用扫描来转置的算法(这个算法比较容易,在这里我就不说了),但是这个转置算法的时间复杂度太高,于是就有了接下来的快速转置算法。

要你对一个三元表进行步骤最少的转置,你可能会想,如果知道三元表中每一项在转置后的新的三元表中的位置,然后直接放进去,岂不是极大的缩小了时间复杂度?没错!快速转置法正是基于这种思想而设计的。

那么如何知道三元表中某一项的位置呢?在课本98页的a.data这个三元表可以看到,j为列号,在转置后即为新的三元表的行号,三元表正是按照行序进行排列的,而j=1有2个、j=2有2个、j=3有2个、j=4有1个、j=6有1个。根据这些数据按照从小到大排列,j=1的项在新的三元表中应占据第1、2位,j=2的项在新的三元表中应占据第3、4位,j=3的项在新的三元表中应占据第5、6位,j=4应占据第7位,j=6应占据第8位。

接下来就轻松多了,转置的时候直接从第一项读起,读取其j值,比如课本中a.data这个三元表的第一项的j值为2,因为j=2占据第3、4位,所以应该从第三位开始放,接下来如果读取的某一项的j值也是2,就放在第4位。因为j=2的项只有两个,所以第5位绝对不会被j=2的项占据,第5、6项本来就是留给j=3的。再比如当读到j=6的那项时,第8位是留给它的,就可以直接放进第8位了。这样,读取每一项,都能在三元表中找到相应的位置,这就是稀疏矩阵快速转置的原理。

当然,上面只是快速转置的原理,要实现它,就要设计算法来实现了。首先,我们需要两个变量。第一个num[col]用于记录原三元表中列数为col的项的数目,例如col=3时,num[col]=2;第二个cpot[col]用于记录原三元表中列数为col的项在新三元表中的首位置,例如col=3时,cpot[col]=5。你可以打开书本第99页,我想你现在应该是能看懂表5.1了吧。

接下来说一说快速转置算法的具体事项,在课本的100页代码如下:

逐句解释:

①  此函数名为FastTransposeSMatrix,形参有原三元表TSMatrix M,作用是传入三元表;三元表TSMatrix &T,采用引用以返回一个三元表。

②  三元表T可能没有初始化,这句的意思是将矩阵M的行数,列数,以及非零元个数传给矩阵T,使其初始化。

③  T.tu为真时,即矩阵M中至少存在一个非零元。

④  初始化数组num

⑤  书中的注释是求M中每一列含非零元的个数。具体来说,当原三元表M中某两项或多项的j值相同时,M.data[t].j的值是相等的,因此这个循环完成后,比如说num[3]的值就是原三元表M列数为3的个数。

⑥  书中的注释标错位置了,应该是第一个for循环的后面。Cpot[1]=1的用处是第一列的在新三元表T的第一个插入位置为1。Cpot[0]是留给储存三元表行列数和非零元个数的。

⑦  这句话是用来求除第一列外其它每一列的第一个非零元在新三元表T中的位置。第col列第一个非零元的位置为第col-1列第一个非零元的位置加上第col-1列非零元的个数,这是个非常简单的数学问题,没必要多说了。

⑧  M.tu的值是原三元表M的非零元个数,这个循环是用来遍历原三元表M的每一项。

⑨  Col=M.data[p].j的作用是得到循环当前项p的列数值j,赋给col,cpot[col]的值即为第col列的第一个插入位置,如果你问为什么,请看第七句。q=cpot[col]作用是用q来记录当前第col列的插入位置(当然你也可以不用这个赋值,只需把接下来出现的q都改为cpot[col]就行)。

⑩  将原三元表M的当前第p项的i,j值进行交换后给新三元表T的第q项,这样第p项就转置后正确的插入到新三元表的正确位置。

?  将当前原三元表的第p项的非零元的值给新三元表的第p项。后一句++cpot[col]这个自增语句是使列数位col的项在新三元表的插入位置移动一位,下次再碰到列数位col的列时,插入位置即为此次插入位置的下一个。

原文地址:https://www.cnblogs.com/lyxcode/p/8321725.html

时间: 2024-10-11 04:37:51

稀疏矩阵三元组快速转置(转poklau123写的很清楚)的相关文章

【数据结构之旅】稀疏矩阵的快速转置

说明: 稀疏矩阵的快速转置算法的核心在于,用一个数组num记录原来矩阵中的每列非零元个数,用另一个数组cpos来记录原矩阵每列第一个非零元在新矩阵中的位置,以此来达到快速转置的目的. 用这样的方法,主要是希望,矩阵转置后,存储顺序依然是按照行来存储的. 1.实现及代码注释 根据上面的核心提示,可以有如下的代码,下面的代码中的注释已经非常详细,因此这里就不把每一部分实现的功能独立开来了: #include<stdio.h> #include<stdlib.h> #define OVE

数据结构----稀疏矩阵的快速转置

使用两种方法将稀疏矩阵快速转置 #include<iostream> #include<vector> using namespace std; template<class T> struct Triple  //三元组 { size_t row; size_t col; T _value; }; template<class T> class SparseMatrix { public: SparseMatrix(T *arr, size_t rowsi

稀疏矩阵-压缩存储-列转置法- 一次定位快速转置法

稀疏矩阵的压缩存储 压缩存储值存储极少数的有效数据.使用{row,col,value}三元组存储每一个有效数据,三元组按原矩阵中的位置,以行优先级先后顺序依次存放. 压缩存储:行优先一行一行扫 有效数据存入以为矩阵_arr 列转置法 : 从前向后遍历压缩矩阵,先找列号为0的存入 转置矩阵的压缩矩阵.然后从前向后找列号为1的 ...直到转置矩阵的压缩矩阵大小和 原矩阵的一样大 这时就找完了 时间复杂度为    O(原矩阵列数 * 压缩矩阵长度) 一次定位快速转置法: 设置两个辅助矩阵 RowCou

稀疏矩阵的压缩存储及快速转置

当一个矩阵为稀疏矩阵时,有效数据的个数比无效数据要少得多,因此若将一个矩阵全部存储会浪费空间,可以只将有效数据存储起来,无效数据作为标记 代码如下: #include <iostream> #include <vector> using namespace std; //可用一个三元组来存储有效数据的信息 template<class T> struct Triple {  size_t _row;  size_t _col;  T _value; }; //系数矩阵类

稀疏矩阵的列序递增法和一次定位快速转置法

稀疏矩阵:矩阵中大多数元素为0的矩阵,从直观上讲,当非零元素个数低于总元素的30%时,这样的矩阵为稀疏矩阵. 如: int array [6][5] =     {{1, 0, 3, 0, 5}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {1, 0, 3, 0, 5}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}}; 稀疏矩阵的压缩存储:使用{row,col,value}三元组存储每一个有效数据,三元组按原矩阵中的位置,以行优先级先后顺序依次存放

稀疏矩阵的普通转置与快速转置算法

稀疏矩阵的普通转置与快速转置算法 一般来说,对于系数矩阵,我们使用三元组来存储.即就是将矩阵的所有非零元素的三元组存放在一个顺序表中,如图所示: 注意一个转置的前提:该顺序表是排好序的,即行优先,列其次. 一.普通转置 这种算法比较简单,也很容易想到: 算法思想: 对M.data从头至尾扫描: ?第一次扫描时,将M.data中列号为1的三元组赋值到T.data中 ?第二次扫描时,将M.data中列号为2的三元组赋值到T.data中 ?依此类推,直至将M.data所有三元组赋值到T.data中 代

C++实现稀疏矩阵的压缩存储、转置、快速转置

/*稀疏矩阵的压缩存储.转置.快速转置*/ #include <iostream> using namespace std; #include <vector> //三元组 template<class T> struct Triple { size_t _row; size_t _col; T _value; Triple(size_t row = 0, size_t col = 0, const T& value = T()) :_row(row) ,_co

稀疏矩阵转置+快速转置

稀疏矩阵转置 Description 稀疏矩阵的存储不宜用二维数组存储每个元素,那样的话会浪费很多的存储空间.所以可以使用一个一维数组存储其中的非零元素.这个一维数组的元素类型是一个三元组,由非零元素在该稀疏矩阵中的位置(行号和列号对)以及该元组的值构成. 矩阵转置就是将矩阵行和列上的元素对换. 现在就请你对一个稀疏矩阵进行转置.以下是稀疏矩阵转置的算法描述: 图:稀疏矩阵转置的算法描述 Input 输入的第一行是两个整数r和c(r*c <= 12500),分别表示一个包含很多0的稀疏矩阵的行数

c++矩阵的转置和快速转置

矩阵的转置 将原矩阵的行.列对换,也就是将[i][j]和[j][i]位置上的数据对换. 程序代码: #include<vector>   //稀疏矩阵push pop operator[] 和顺序表一致   template<class T> struct Triple  //定义一个三元组 可以直接访问的定义成struct { size_t _row; size_t _col; T _value;   Triple(size_t row, size_t col, const T&