buildroot构建项目(一)---buildroot介绍

1.1 什么是buildroot

  Buildroot是Linux平台上一个构建嵌入式Linux系统的框架。整个Buildroot是由Makefile脚本和Kconfig配置文件构成的。你可以和编译Linux内核一样,通过buildroot配置,menuconfig修改,编译出一个完整的可以直接烧写到机器上运行的Linux系统软件(包含boot、kernel、rootfs以及rootfs中的各种库和应用程序)。

  下载:git clone git://git.buildroot.net/buildroot

  解压:tar -xzvf buildroot-2017.02.9.tar.gz

1.2 buildroot 的目录结构

  • buildroot/package/:下面放着应用软件的配置文件,每个应用软件的配置文件有Config.in和soft_name.mk,其中soft_name.mk(这种其实就Makefile脚本的自动构建脚本)文件可以去下载应用软件的包。
  • buildroot/output/:是编译出来的输出文件夹,里面的build/目录存放着解压后的各种软件包编译完后的现场。
    • host:是由各类源码编译后在你主机上运行的工具(build for host)的安装目录,如arm-linux-gcc就是安装在这里.

      • 编译出来的主机工具在host/usr下
      • 根目录所需要的库及一些基本目录就在host/< tuple >/sysroot/或host/usr/< tuple >/sysroot/里 (< tuple >:arm-buildroot-linux-gnueabi),如果是外部toolchain,比如lirano的就在libc里,名字不一样而已  
    • build:所有源码包解压出来的文件存放地和编译的发生地
    • staging:软链接到host/< tuple >/sysroot/ 就是上面说到的文件系统需要的库等目录,方便查看
    • target: 目录是用来制作rootfs的,里面放着Linux系统基本的目录结构,以及各种编译好的应用库和bin可执行文件。不能用来nfs mount到开发板,因为buildroot不是root权权运行的,所以现dev/,etc/等一些文件无法创建,所以目录还不完整,要用images/里的rootfs.tar解压出来的根文件目录才能mount.使用如下命令:sudo tar -C /destination/of/extraction -xf images/rootfs.tar
    • Images:目录下就是最终生成的可烧写到板子上的各种image。
  • buildroot/dl:存放下载的源码包及应用软件的压缩包
  • buildroot/fs:放各种文件系统的源代码
  • buildroot/fs/skeleton:放生成文件系统镜像的地方,及板子里面的系统
  • buildroot/linux: 存放着Linux kernel的自动构建脚本。
  • buildroot/configs:放置开发板的一些配置参数
  • buildroot/dl:目录存放从官网上下载的开源软件包,第一次下载后,下次就不会再去从官网下载了,而是从dl/目录下拿开源包,以节约时间。本身下载通常都是很慢的,你可以手动找到相关包下载后放到这里就OK了,make时会自动检测这个目录.
  • buildroot/docs: 存放相关的参考文档。
  • buildroot/arch: 目录存放CPU架构相关的配置脚本,如arm/mips/x86 ,这些CPU相关的配置,在制作工具链,编译boot和内核时很关键。
  • buildroot/board:存放了一些默认开发板的配置补丁之类的
  • buildroot/boot:
  • buildroot/build:
  • buildroot/support:
  • buildroot/system:这里就是根目录的主要骨架了和相关的启动初始化配置,当制作根目录时就是将此处的文件cp到output里去.然后再安装toolchain的动态库和你勾选的package的可执行文件之类的.
  • buildroot/toolchain:

1.3 buildroot 的工作原理

  Buildroot原则上是一个自动构建框架,虽然说u-boot、linux kernel这些经典的开源软件包的构建脚本,官方社区都在帮你实现了,但是有时候你还是需要加入你自己特有的app_pkg软件包,用以构建自己的应用。

  buildroot的编译流程是先从dl/xxx.tar下解压出源码到output/build/xxx,然后它利用本身的配置文件(如果有的话)覆盖output/build/xxx下的配置文件,在开始编译连接完成后安装到output/相应文件夹下.

  Buildroot提供了函数框架和变量命令框架,采用它的框架编写的app_pkg.mk这种Makefile格式的自动构建脚本,将被package/pkg-generic.mk 这个核心脚本展开填充到buildroot主目录下的Makefile中去。最后make all执行Buildroot主目录下的Makefile,生成你想要的image。

  package/pkg-generic.mk中通过调用同目录下的pkg-download.mk、pkg-utils.mk文件,已经帮你自动实现了下载、解压、依赖包下载编译等一系列机械化的流程。你只要需要按照格式写Makefile脚app_pkg.mk,填充下载地址,链接依赖库的名字等一些特有的构建细节即可。

  总而言之,Buildroot本身提供构建流程的框架,开发者按照格式写脚本,提供必要的构建细节,配置整个系统,最后自动构建出你的系统。

  

  buildroot/packages里面有丰富的应用软件的配置文件,可以通过make menuconfig,出现图形化界面进行选择丰富的开源软件包的编译和构建。

1.4 构建JZ2440 开发环境

1.4.1 查看一下当前的buildroot中支持的开发板

  执行命令: make list-defconfigs

  

  在 2017.02.9 版本中并没有三星的模块,这里我们只能自己慢慢的一步步构建了。

1.4.2 构建开发板

  要构建自己的开发板,首先要创建一个基本的 buildroot配置作为开发板的基本编译系统。这里包括toolchain,kernel,bootloader,filesystem 和一个简单的 busy-box 用户空间。不要选择特别的配置,这个配置必须要足够小,并仅仅作为目标平台一个基本的 BusyBox 系统。

  执行 make menuconfig:

  

  • Target options:目标板的配置

    • Target Architecture:目标架构,这里选择 ARM(little endian),ARM小端模式
    • Target Binary Format:二进制格式,为 ELF
    • Target Architecture Variant:架构变体为 arm920t,内核类型
    • Target ABI:应用程序二进制接口,为EABI
    • Floating point strategy:浮点数的策略,选择为 Soft float
    • ARM instruction set:arm 汇编指令集,选择  ARM
  • Build options:主要是一些编译时用到的选项,比如dl的路径,下载代码包使用的路径,同时运行多个编译的上限,是否使能编译器缓冲区等等,这里按照默认就行了.
  • Toolchain:工具链选项
    • Toolchain type:Buildroot提供两种方式使用toolchain

      • external toolthain:非Buildroot提供的交叉编译器
      • Buildroot toolchain:Buildroot本身编译生成的Buildroot toolchain,直接选择此项
    • custom toolchain vendor name:填上S3C2440
    • C library:C库选择,选择 glibc
    • Kernel Headers:内核头文件,Linux 4.9.x kernel headers
    • glibc version:glibc版本选择,2.24
    • Binutils Version:binutils版本:2.27
    • Additional binutils options:附加的 binutils 选择,不填即可
    • GCC compiler Version:GCC版本选择,gcc 6.x
    • Additional gcc options:附件的GCC选项,不填写即可
    • Enable C++ support:使能C++支持,选上
    • Enable Fortran support:使能Fortran语言支持,不选
    • Enable compiler link-time-optimization support:是否支持LTO,不选,LTO是什么:http://blog.csdn.net/fickyou/article/details/52381776
    • Enable compiler OpenMP support:支持OpenMP?OpenMP用于共享内存并行系统的多处理器程序设计,OpenMP并不适合需要复杂的线程间同步和互斥的场合,OpenMp的另一个缺点是不能在非共享内存系统(如计算机集群)上使用。不选择
    • Enable graphite support :是否支持graphite。Graphite是应用WEB应用的一套开源的编程接口。不选择。具体看百度百科:https://baike.baidu.com/item/Graphite/9810474?fr=aladdin
    • Build cross gdb for the host:主机上运行gdb进行调试,不选
    • Copy gconv libraries:拷贝 gconv库,gconv库用于在不同字符集之间进行转换。默认不选即可
    • Enable MMU support:使能 MMU,S3C2440支持MMU,选上
    • Target Optimizations:不选
    • Target linker options:不选
    • Register toolchain within Eclipse Buildroot plug-in:eclipse插件支持,不选
  • System configuration:系统配置
    • Root FS skeleton:
    • System hostname:填写JZ2440 
    • System banner
    • Passwords encoding
    • Init system:系统初始化,选择 BusyBox
    • /dev management:设备文件管理,选择Dynamic using devtmpfs + mdev,即使用mdev动态加载设备节点的方式
    • Path to the permission tables:设备节点的配置表设置,一定要选择system/device_table_dev.txt,否则后面在dev目录下将不会生成各种设备节点。当然我们也可以手动的配置该文件,添加必要的节点或删除不需要的节点。
    • support extended attributes in device tables
    • Use symlinks to /usr for /bin, /sbin and /lib
    • Enable root login with password
    • Root password:进入linux控制台终端后的密码,为空则登录时不需要密码,默认登录用户名为root。为空。
    • /bin/sh (busybox‘ default shell)
    • Run a getty (login prompt) after boot:保持默认,默认为选中。
      • TTY port:配置为 ttySAC3
      • Baudrate :波特率,配置为 115200
      • TERM environment variable:默认即可
      • other options to pass to getty:默认即可
    • remount root filesystem read-write during boot
    • Network interface to configure through DHCP
    • Purge unwanted locales
    • Locales to keep
    • Generate locale data
    • Install timezone info
    • Path to the users tables
    • Root filesystem overlay directories:
    • Custom scripts to run before creating filesystem images
    • Custom scripts to run inside the fakeroot environment
    • Custom scripts to run after creating filesystem images
  • Kernel:内核配置
    • Kernel version:内核版本,选择用户自定义,Custom version
    • Kernel version:填上自己所需要的版本,4.14.12
    • Custom kernel patches:自定义的内核补丁,无
    • Kernel configuration:内核配置,选择 Using an in-tree defconfig file
    • Defconfig name:填写为 mini2440
    • Additional configuration fragment files:暂且不填写
    • Kernel binary format:内核二进制文件格式,zImage
    • Kernel compression format:内核压缩格式,选择gzip即可
    • Build a Device Tree Blob:设备树?暂且不填写
    • Install kernel image to /boot in target:暂且不填
    • Linux Kernel Extensions:内核扩展,默认不选择
    • Linux Kernel Tools:内核工具,默认不选择
  • Target packages
  • Filesystem images:文件系统选择,选择 yaffs2 root filesystem
  • Bootloaders:硬件启动程序,选择为 U-boot
    • Build system:u-boot系统选择为Kconfig

      • legacy:若是选择2015.04之前的u-boot 选择此项
      • Kconfig:2015.04之后的 u-boot 选择此项,勾选此项  
    • U-boot Version:U-boot版本,默认为 2017.01,选择为Custom version
    • U-Boot version:填写为2017.11
    • Custom U-boot patches:U-boot补丁,不添加
    • U-Boot configuration:U-boot配置,暂时还没有U-BOOT,所以选择为:Using an in-tree board defconfig file
    • Board defconfig:板子的配置,选择与架构一样的板子的默认文件,mini2440。后期再修改
    • U-boot needs dtc:是否需要设备树,默认,后期调试
    • U-boot needs OpenSSL:是否需要 OpenSSL,默认,后期调试修改
    • U-boot binary format:二进制文件,选择 .bin文件
    • produce a .ift signed image:默认
    • Install U-boot SPL binary image:默认
    • Environment image:默认
  • Host utilities
  • Legacy config options

  配置完成后,执行make命令。

  编译报错:

  

  这是因为 u-boot-2017.11中不再支持 mini2440的开发板了,找不到 mini2440_defconfig文件。

  u-boot-2017.11 解压到了 output/build 目录中。

  在目录中寻找 mini2440 开发板:find -name "*" | xargs grep -s mini2440

  

  可以看到 mini2440 在2014-01-13 被移除了。这样我们必须添加一块arm920t的开发板了。

  查找 S3C24X0:grep -irn --color "S3C24X0"

  

  S3C24X0的库函数还存在。这样得选择一块板子,重新搭建起 2440 开发板了。

  下一章继续。

原文地址:https://www.cnblogs.com/kele-dad/p/8231434.html

时间: 2024-10-12 20:24:05

buildroot构建项目(一)---buildroot介绍的相关文章

buildroot构建项目(三)--- u-boot 2017.11 适配开发板修改 1

当前虽然编译成功了,但是对于我们自己的目标板并不太适用.还得做一系列得修改. 一.lds 文件分析 u-boot 中最重要得链接文件即是,u-boot.lds.我们可以查看我们编译出来得 u-boot.lds 文件进行分析,原始文件在 arch/arm/cpu/ 下,编译出来得去掉了不想关得选项. u-boot.lds脚本文件告诉链接器linker如何布局代码段.数据段.bss段等,已经配置了u-boot自拷贝(从flash到RAM的copy)的内容.另外,还简要的涉及了动态链接技术等. 1 /

buildroot构建项目(五)--- u-boot 2017.11 适配开发板修改 4 ---- 系统启动初始化之三

一.内存控制器 在关闭了MMU和caches 之后 就进入lowlevel_init 函数,对内存控制器进行初始化.lowlevel_init.S (board\samsung\mini2440) 1.1 内存控制器介绍 前面已经看过这张表格了.从这张表格中可以看处,我们的程序代码,不管使用不使用 NAND Flash 都是从0地址开始启动,只不过使用 Nand flash 需要将前4K代码拷贝进 SRAM中去. 1.2 内存控制器的寄存器 1.2.1 总线宽度和等待控制寄存器 每一个 BANK

buildroot构建项目(七)--- u-boot 2017.11 适配开发板修改 4 ---- 系统启动初始化之四

设置完寄存器控制器后,则跳出cpu_init_crit,进入_main 函数.即进入crt0.S (arch\arm\lib)  跟着代码流程慢慢走 一.crt0.S 1.1 第一步执行代码 1 /* 预设堆栈指针为CONFIG_SYS_INIT_SP_ADDR */ 2 /* #define CONFIG_SYS_INIT_SP_ADDR (CONFIG_SYS_SDRAM_BASE + 0x1000 - GENERATED_GBL_DATA_SIZE) */ 3 /* #define CON

buildroot构建项目(八)--- u-boot 2017.11 适配开发板修改 5 ---- 系统启动初始化之五

执行完 board_init_f 后,跳回到 crt0.S中继续执行汇编语言 1 ldr r0, [r9, #GD_START_ADDR_SP] /* sp = gd->start_addr_sp,gd->start_addr_sp在fdt的初始位置 */ 2 bic r0, r0, #7 /* 8-byte alignment for ABI compliance */ 3 mov sp, r0 /* sp 指向 fdt 初始位置 */ 4 ldr r9, [r9, #GD_BD] /* r

Buildroot构建指南--快速上手与实用技巧【转】

本文转载自:http://blog.csdn.net/zhou_chenz/article/details/52335634 Buildroot官方全英文使用手册的链接是https://buildroot.org/downloads/manual/manual.html,需要知道每一个细节的朋友,可以仔细查阅,这篇文章只是我自己从中提炼出来的一下快速上手的技巧. 如何在现有项目加入自己的APP Buildroot从零开始构建的过程还是很复杂的,以后的文章会一步步介绍.我们先来看看如何在现有项目中

迅为iTop开发板使用buildroot构建opencv文件系统

这次我们来介绍使用buildroot构建opencv开发环境,buildroot 是 Linux平台上一个构建嵌入式Linux系统的框架.整个buildroot是由 Makefile脚本和Kconfig配置文件构成的.可以和编译Linux内核一样,通过 buildroot 配置,menuconfig 修改,编译出一个完整的可以直接烧写到机器上运行的Linux系统. 1.源码下载: buildroot官网获取源码包 http://buildroot.uclibc.org/download.html

Buildroot构建指南——根文件系统(Rootfs)

Buildroot构建指南--根文件系统(Rootfs) Buildroot的Rootfs构建流程有一个大框架,有些部分是Buildroot系统做好的,有些细节需要自己来实现,Rootfs也是Buildroot中最为复杂的部分. Rootfs的构建流程概述 Rootfs的构建流程如图1所示.其中浅色框中为Buildroot实现的框架,深紫色框为用户实现的脚本. Figure 1 Buildroot系统的rootfs制作 需要归纳的几点如下: 1.      新版buildroot已经把rootf

Buildroot构建指南——根文件系统(Rootfs)【转】

本文转载自; 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] Buildroot构建指南——根文件系统(Rootfs) Buildroot的Rootfs构建流程有一个大框架,有些部分是Buildroot系统做好的,有些细节需要自己来实现,Rootfs也是Buildroot中最为复杂的部分. Rootfs的构建流程概述 Rootfs的构建流程如图1所示.其中浅色框中为Buildroot实现的框架,深紫色框为用户实现的脚本. Figure 1 Buildroot系统的root

利用makefile构建c++项目的思路介绍

入门介绍 起因是我在工作中,遇到了一个多个执行文件打包成的组件,而每个执行文件都需要将pb编进二进制中,导致release包非常大.所以想到,是否应该将pb编程动态链接库,再供可执行文件使用呢?达成这个目的需要做两件事.1.将pb编成.so文件.2.将原本的链接方式改为动态链接. makefile是make构建项目所需要的规则文件.通产在其中指定了编译目标.编译指令.编译依赖.通常的makefile被命名为"Makefile""makefile",但也可以通过mak