深度优先搜索、广度优先搜索

1. 深度优先搜索介绍

图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。

它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

显然,深度优先搜索是一个递归的过程。

2. 深度优先搜索图解

2.1 无向图的深度优先搜索

下面以"无向图"为例,来对深度优先搜索进行演示。

对上面的图G1进行深度优先遍历,从顶点A开始。

第1步:访问A。 
第2步:访问(A的邻接点)C。 
    在第1步访问A之后,接下来应该访问的是A的邻接点,即"C,D,F"中的一个。但在本文的实现中,顶点ABCDEFG是按照顺序存储,C在"D和F"的前面,因此,先访问C。 
第3步:访问(C的邻接点)B。 
    在第2步访问C之后,接下来应该访问C的邻接点,即"B和D"中一个(A已经被访问过,就不算在内)。而由于B在D之前,先访问B。 
第4步:访问(C的邻接点)D。 
    在第3步访问了C的邻接点B之后,B没有未被访问的邻接点;因此,返回到访问C的另一个邻接点D。 
第5步:访问(A的邻接点)F。 
    前面已经访问了A,并且访问完了"A的邻接点B的所有邻接点(包括递归的邻接点在内)";因此,此时返回到访问A的另一个邻接点F。 
第6步:访问(F的邻接点)G。 
第7步:访问(G的邻接点)E。

因此访问顺序是:A -> C -> B -> D -> F -> G -> E

2.2 有向图的深度优先搜索

下面以"有向图"为例,来对深度优先搜索进行演示。

对上面的图G2进行深度优先遍历,从顶点A开始。

第1步:访问A。 
第2步:访问B。 
    在访问了A之后,接下来应该访问的是A的出边的另一个顶点,即顶点B。 
第3步:访问C。 
    在访问了B之后,接下来应该访问的是B的出边的另一个顶点,即顶点C,E,F。在本文实现的图中,顶点ABCDEFG按照顺序存储,因此先访问C。 
第4步:访问E。 
    接下来访问C的出边的另一个顶点,即顶点E。 
第5步:访问D。 
    接下来访问E的出边的另一个顶点,即顶点B,D。顶点B已经被访问过,因此访问顶点D。 
第6步:访问F。 
    接下应该回溯"访问A的出边的另一个顶点F"。 
第7步:访问G。

因此访问顺序是:A -> B -> C -> E -> D -> F -> G

无向图的邻接矩阵实现代码:

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>

#define MAX 100

typedef struct graph
{
    char vexs[MAX];
    int vexnum;
    int edgnum;
    int matrix[MAX][MAX];
}Graph,*PGraph;

static int get_position(Graph g,char ch)
{
    int i;
    for(i=0;i<g.vexnum;i++)
        if(g.vexs[i]==ch)
            return i;
    return -1;
}

Graph* create_graph()
{
   char vexs[]={‘A‘,‘B‘,‘C‘,‘D‘,‘E‘,‘F‘,‘G‘};
   char edges[][2]={{‘A‘,‘C‘},{‘A‘,‘D‘},{‘A‘,‘F‘},{‘B‘,‘C‘},{‘C‘,‘D‘},{‘E‘,‘G‘},{‘F‘,‘G‘}};
   int vlen=sizeof(vexs)/sizeof(vexs[0]);
   int  elen=sizeof(edges)/sizeof(edges[0]);
   int i,p1,p2;
   Graph *pG;
   if((pG=(Graph*)malloc(sizeof(Graph)))==NULL)
        return NULL;
   memset(pG,0,sizeof(Graph));
   pG->vexnum=vlen;
   pG->edgnum=elen;
   for(i=0;i<pG->vexnum;i++)
   {
       pG->vexs[i]=vexs[i];
   }
   for(i=0;i<pG->edgnum;i++)
   {
       p1=get_position(*pG,edges[i][0]);
       p2=get_position(*pG,edges[i][1]);
       pG->matrix[p1][p2]=1;
       pG->matrix[p2][p1]=1;
   }
   return pG;
}

void print_graph(Graph G)
{
    int i,j;
    printf("matrix Graph:\n");
    for(i=0;i<G.vexnum;i++)
    {
        for(j=0;j<G.vexnum;j++)
            printf("%d ",G.matrix[i][j]);
        printf("\n");
    }
}

int first_vertex(Graph G,int v)
{
    int i;
    for(i=0;i<G.vexnum;i++)
        if(G.matrix[v][i]==1)
            return i;
    return -1;
}

int next_vertex(Graph G,int v,int w)
{
    int i;
    for(i=w+1;i<G.vexnum;i++)
        if(G.matrix[v][i]==1)
            return i;
    return -1;
}

void DFS(Graph G,int i,int *visited)
{
    visited[i]=1;
    int w;
    printf("%c ",G.vexs[i]);
    for(w=first_vertex(G,i);w>=0;w=next_vertex(G,i,w))
    {
        if(visited[w]==0)
            DFS(G,w,visited);
    }
}

void DFSTraverse(Graph G)
{
    int i;
    int visited[MAX];
    memset(visited,0,sizeof(visited));
    printf("DFS : \n");
    for(i=0;i<G.vexnum;i++)
        if(!visited[i])
            DFS(G,i,visited);
    printf("\n");
}

int main()
{
    Graph *pG;
    pG=create_graph();
    print_graph(*pG);
    printf("\n");
    DFSTraverse(*pG);
}

运行结果:

无向图的邻接表实现代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<malloc.h>
#define MAX 100
typedef struct ENode
{
    int ivex;
    struct ENode *next_edge;
}ENode;

typedef struct VNode
{
    char data;
    ENode *first_edge;
}VNode;

typedef struct LGraph
{
    int vexnum;
    int edgnum;
    VNode vexs[MAX];
} LGraph;

static int get_position(LGraph g,char ch)
{
    int i;
    for(i=0;i<g.vexnum;i++)
        if(g.vexs[i].data==ch)
            return i;
    return -1;
}

LGraph* create_lgraph()
{
    char c1,c2;
    char vexs[]= {‘A‘,‘B‘,‘C‘,‘D‘,‘E‘,‘F‘,‘G‘};
    char edges[][2]= {{‘A‘,‘C‘},{‘A‘,‘D‘},{‘A‘,‘F‘},{‘B‘,‘C‘},{‘C‘,‘D‘},{‘E‘,‘G‘},{‘F‘,‘G‘}};
    int vlen=sizeof(vexs)/sizeof(vexs[0]);
    int elen=sizeof(edges)/sizeof(edges[0]);
    int i,p1,p2;
    ENode *node1,*node2;
    LGraph *pG;
    if((pG=(LGraph*)malloc(sizeof(LGraph)))==NULL)
        return NULL;
    memset(pG,0,sizeof(LGraph));
    pG->vexnum=vlen;
    pG->edgnum=elen;
    for(i=0;i<pG->vexnum;i++)
    {
        pG->vexs[i].data=vexs[i];
        pG->vexs[i].first_edge=NULL;
    }

    for(i=0;i<pG->edgnum;i++)
    {
        c1=edges[i][0];
        c2=edges[i][1];
        p1=get_position(*pG,c1);
        p2=get_position(*pG,c2);
        node1=(ENode*)malloc(sizeof(ENode));
        node1->ivex=p2;
        node1->next_edge=NULL;
        if(pG->vexs[p1].first_edge==NULL)
            pG->vexs[p1].first_edge=node1;
        else
        {
            ENode *tmp=pG->vexs[p1].first_edge;
            while(tmp->next_edge)
            {
                tmp=tmp->next_edge;
            }
            tmp->next_edge=node1;
        }
        node2=(ENode*)malloc(sizeof(ENode));
        node2->ivex=p1;
        node2->next_edge=NULL;
        if(pG->vexs[p2].first_edge==NULL)
            pG->vexs[p2].first_edge=node2;
        else
        {
            ENode *tmp=pG->vexs[p2].first_edge;
            while(tmp->next_edge)
            {
                tmp=tmp->next_edge;
            }
            tmp->next_edge=node2;
        }
    }
    return pG;
}

void print_lgraph(LGraph G)
{
    int i;
    ENode *node;
    printf("list Graph:\n");
    for(i=0;i<G.vexnum;i++)
    {
        printf("%d(%c): ",i,G.vexs[i].data);
        node=G.vexs[i].first_edge;
        while(node)
        {
            printf("%d(%c) ",node->ivex,G.vexs[node->ivex].data);
            node=node->next_edge;
        }
        printf("\n");
    }
    printf("\n");
}

int main()
{
    LGraph *pG;
    pG=create_lgraph();
    print_lgraph(*pG);
}

运行结果:

有向图与无向图的DFS一样,只是创建图的方式不一样。

广度优先搜索的图文介绍

1. 广度优先搜索介绍

广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

2. 广度优先搜索图解

2.1 无向图的广度优先搜索

下面以"无向图"为例,来对广度优先搜索进行演示。还是以上面的图G1为例进行说明。

第1步:访问A。 
第2步:依次访问C,D,F。 
    在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。 
第3步:依次访问B,G。 
    在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。 
第4步:访问E。 
    在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E

2.2 有向图的广度优先搜索

下面以"有向图"为例,来对广度优先搜索进行演示。还是以上面的图G2为例进行说明。

第1步:访问A。 
第2步:访问B。 
第3步:依次访问C,E,F。 
    在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。 
第4步:依次访问D,G。 
    在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G

无向图的邻接矩阵BFS遍历代码:

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>

#define MAX 100
typedef struct graph
{
    char vexs[MAX];
    int vexnum;
    int edgnum;
    int matrix[MAX][MAX];
}Graph,*PGraph;

static int get_position(Graph g,char ch)
{
    int i;
    for(i=0;i<g.vexnum;i++)
        if(g.vexs[i]==ch)
            return i;
    return -1;
}

Graph* create_graph()
{
   char vexs[]={‘A‘,‘B‘,‘C‘,‘D‘,‘E‘,‘F‘,‘G‘};
   char edges[][2]={{‘A‘,‘C‘},{‘A‘,‘D‘},{‘A‘,‘F‘},{‘B‘,‘C‘},{‘C‘,‘D‘},{‘E‘,‘G‘},{‘F‘,‘G‘}};
   int vlen=sizeof(vexs)/sizeof(vexs[0]);
   int  elen=sizeof(edges)/sizeof(edges[0]);
   int i,p1,p2;
   Graph *pG;
   if((pG=(Graph*)malloc(sizeof(Graph)))==NULL)
        return NULL;
   memset(pG,0,sizeof(Graph));
   pG->vexnum=vlen;
   pG->edgnum=elen;
   for(i=0;i<pG->vexnum;i++)
   {
       pG->vexs[i]=vexs[i];
   }
   for(i=0;i<pG->edgnum;i++)
   {
       p1=get_position(*pG,edges[i][0]);
       p2=get_position(*pG,edges[i][1]);
       pG->matrix[p1][p2]=1;
       pG->matrix[p2][p1]=1;
   }
   return pG;
}

void print_graph(Graph G)
{
    int i,j;
    printf("matrix Graph:\n");
    for(i=0;i<G.vexnum;i++)
    {
        for(j=0;j<G.vexnum;j++)
            printf("%d ",G.matrix[i][j]);
        printf("\n");
    }
}

int first_vertex(Graph G,int v)
{
    int i;
    for(i=0;i<G.vexnum;i++)
        if(G.matrix[v][i]==1)
            return i;
    return -1;
}

int next_vertex(Graph G,int v,int w)
{
    int i;
    for(i=w+1;i<G.vexnum;i++)
        if(G.matrix[v][i]==1)
            return i;
    return -1;
}

void BFS(Graph G)
{
    int visited[MAX];
    int queue[MAX];
    int front=0;
    int rear=0;
    memset(visited,0,sizeof(visited));
    int i,v,w;
    for(i=0;i<G.vexnum;i++)
    {
        if(!visited[i])
        {
            visited[i]=1;
            printf("%c ",G.vexs[i]);
            queue[rear++]=i;
        }
        while(rear!=front)
        {
            v=queue[front++];
            for(w=first_vertex(G,v);w>=0;w=next_vertex(G,v,w))
            {
                if(visited[w]==0)
                {
                    visited[w]=1;
                    printf("%c ",G.vexs[w]);
                    queue[rear++]=w;
                }
            }
        }
    }
}

int main()
{
    Graph *pG;
    pG=create_graph();
    print_graph(*pG);
    printf("\n");
    BFS(*pG);
}

运行结果:

邻接表的BFS遍历代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<malloc.h>
#define MAX 100
typedef struct ENode
{
    int ivex;
    struct ENode *next_edge;
}ENode;

typedef struct VNode
{
    char data;
    ENode *first_edge;
}VNode;

typedef struct LGraph
{
    int vexnum;
    int edgnum;
    VNode vexs[MAX];
} LGraph;

static int get_position(LGraph g,char ch)
{
    int i;
    for(i=0;i<g.vexnum;i++)
        if(g.vexs[i].data==ch)
            return i;
    return -1;
}

LGraph* create_lgraph()
{
    char c1,c2;
    char vexs[]= {‘A‘,‘B‘,‘C‘,‘D‘,‘E‘,‘F‘,‘G‘};
    char edges[][2]= {{‘A‘,‘C‘},{‘A‘,‘D‘},{‘A‘,‘F‘},{‘B‘,‘C‘},{‘C‘,‘D‘},{‘E‘,‘G‘},{‘F‘,‘G‘}};
    int vlen=sizeof(vexs)/sizeof(vexs[0]);
    int elen=sizeof(edges)/sizeof(edges[0]);
    int i,p1,p2;
    ENode *node1,*node2;
    LGraph *pG;
    if((pG=(LGraph*)malloc(sizeof(LGraph)))==NULL)
        return NULL;
    memset(pG,0,sizeof(LGraph));
    pG->vexnum=vlen;
    pG->edgnum=elen;
    for(i=0;i<pG->vexnum;i++)
    {
        pG->vexs[i].data=vexs[i];
        pG->vexs[i].first_edge=NULL;
    }

    for(i=0;i<pG->edgnum;i++)
    {
        c1=edges[i][0];
        c2=edges[i][1];
        p1=get_position(*pG,c1);
        p2=get_position(*pG,c2);
        node1=(ENode*)malloc(sizeof(ENode));
        node1->ivex=p2;
        node1->next_edge=NULL;
        if(pG->vexs[p1].first_edge==NULL)
            pG->vexs[p1].first_edge=node1;
        else
        {
            ENode *tmp=pG->vexs[p1].first_edge;
            while(tmp->next_edge)
            {
                tmp=tmp->next_edge;
            }
            tmp->next_edge=node1;
        }
        node2=(ENode*)malloc(sizeof(ENode));
        node2->ivex=p1;
        node2->next_edge=NULL;
        if(pG->vexs[p2].first_edge==NULL)
            pG->vexs[p2].first_edge=node2;
        else
        {
            ENode *tmp=pG->vexs[p2].first_edge;
            while(tmp->next_edge)
            {
                tmp=tmp->next_edge;
            }
            tmp->next_edge=node2;
        }
    }
    return pG;
}

void print_lgraph(LGraph G)
{
    int i;
    ENode *node;
    printf("list Graph:\n");
    for(i=0;i<G.vexnum;i++)
    {
        printf("%d(%c): ",i,G.vexs[i].data);
        node=G.vexs[i].first_edge;
        while(node)
        {
            printf("%d(%c) ",node->ivex,G.vexs[node->ivex].data);
            node=node->next_edge;
        }
        printf("\n");
    }
    printf("\n");
}

void BFS(LGraph G)
{
    int visited[MAX];
    memset(visited,0,sizeof(visited));
    int queue[MAX];
    int front=0;
    int rear=0;
    int i,w;
    ENode *node;
    printf("BFS: \n");
    for(i=0;i<G.vexnum;i++)
    {
        if(visited[i]==0)
        {
            visited[i]=1;
            printf("%c ",G.vexs[i].data);
            queue[rear++]=i;
        }
        while(front!=rear)
        {
            w=queue[front++];
            node=G.vexs[w].first_edge;
            while(node)
            {
                if(visited[node->ivex]==0)
                {
                    visited[node->ivex]=1;
                    printf("%c ",G.vexs[node->ivex].data);
                    queue[rear++]=node->ivex;
                }
                node=node->next_edge;
            }
        }
    }
}
int main()
{
    LGraph *pG;
    pG=create_lgraph();
    print_lgraph(*pG);
    BFS(*pG);
}

原文地址:https://www.cnblogs.com/alantu2018/p/8464624.html

时间: 2024-10-08 01:23:31

深度优先搜索、广度优先搜索的相关文章

无向图的深度优先与广度优先搜索代码实现

图采用了邻接表的形式储存. 带不带权都无所谓的 深度优先搜索 Depth First Search 道理和树的先序遍历差不多,把将要访问的点入栈,然后从栈里取点进行访问. 由于这只是类中的一个成员函数,有些被调用的函数的具体代码将会在文章最后补上 ,但是函数功能看注释就好了 1 //深度优先 2 void GraphAdjacencyListWeight::DFSAdvanced(int StartVertex) { 3 int *visited = new int[VertexNumber];

图的遍历(深度优先与广度优先搜索两种方案)

1.图的遍历--深度优先搜索 import java.util.Scanner ; public class Map{ static int n ; static int m ; static int[] book ; static int[][] e ; public static void mapDfs(int cur){ //深度优先搜索思想核心: System.out.print(cur + " ") ; for (int i=1;i<=n;i++) { if (e[cu

图论 深度优先搜索 广度优先搜索的非递归实现

深度优先遍历 1.深度优先遍历的递归定义 假设给定图G的初态是所有顶点均未曾访问过.在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过:然后依次从v出发搜索v的每个邻接点w.若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止.若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止. 图的深度优先遍历类似于树的

深度优先搜索 &amp;&amp; 广度优先搜索

类比二叉树先序遍历与图深度优先搜索 在引入图的深度优先搜索之前,为了更加容易理解.先考究一种特殊的图---二叉树的深度优先搜索算法---即二叉树的递归遍历方法. 二叉树的前序遍历算法: void TreeWalk(node* root) { if(root) { visit(root); TreeWalk(root->left); TreeWalk(root->right); } } 对于二叉树来说,步骤如下: 1.如果root不为空,先访问root, 2再递归下降地访问root->le

【图论】广度优先搜索和深度优先搜索

写在最前面的 这篇文章并没有非常详细的算法证明过程.导论里面有非常详细的证明过程.本文只阐述“广度优先和深度优先搜索的思路以及一些简单应用”. 两种图的遍历算法在其他图的算法当中都有应用,并且是基本的图论算法. 广度优先搜索 广度优先搜索(BFS),可以被形象的描述为“浅尝辄止”,具体一点就是每个顶点只访问它的邻接节点(如果它的邻接节点没有被访问)并且记录这个邻接节点,当访问完它的邻接节点之后就结束这个顶点的访问. 广度优先用到了“先进先出”队列,通过这个队列来存储第一次发现的节点,以便下一次的

js图的数据结构处理----邻链表,广度优先搜索,最小路径

//邻居连表 //先加入各顶点,然后加入边 //队列 var Queue = (function(){ var item = new WeakMap(); class Queue{ constructor(){ item.set(this,[]); } enqueue(ele){ var ls = item.get(this); ls.push(ele); } dequeue(){ var ls = item.get(this); return ls.shift(); } size(){ var

深度和广度优先搜索

我们知道,算法是作用于具体数据结构之上的,深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构的.这是因为,图这种数据结构的表达能力很强,大部分涉及搜索的场景都可以抽象成“图”. 无向图的代码实现 public class Graph { // 无向图 private int v; // 顶点的个数 private LinkedList<Integer> adj[]; // 邻接表 public Graph(int v) { this.v = v; adj = new LinkedLi

【算法导论】--C++实现广度优先搜索bfs

一.题目 根据上次随机生成的100个顶点的无向图和有向图,对其进行广度优先搜索. 二.理解广度优先搜索 广度优先搜索可以将其想象成水滴落入水面溅起了的一圈一圈的涟漪,是由一个起始点开始一圈一圈进行扩散搜索的. [课上老师是这样说的,大家想象一下,发现其实非常形象] 广度优先搜索总是从一个起始点出发,首先扩散这个点周围所有的邻居,然后邻居在去扩散邻居的邻居(*^-^*)...然后一直到最后将整张图都扩散完. 三.代码实现 对于第一次随机生成100个顶点的图进行了细节的修改,将每个顶点的类型改为了自

广度优先搜索(bfs)

学了将近半年的信息了,昨天猛地间发现我好像不会搜索.... 这就意味着我在noip的时候连暴力都不会打...为了避免这种事情的发生,我决定一定要好好学搜索.. 好了,废话不多说了,下面开始我们的正式话题:广度优先搜索 1.前言 广度优先搜索其实是一种用来遍历连通图的一种算法,它的思想是从一个顶点V0开始,辐射状地优先遍历其周围较广的区域,故得名.                       貌似有的东西就真的跟徐大佬说的一样:说不清楚,只能靠自己去做题才能真正理解. 所以,如果我说的你不是很明白

【算法】广度优先搜索

广度优先搜索(breadth first search) 图 最短路径问题(shorterst-path problem) 解决最短路径问题的算法被称为广度优先搜索. 最短路径问题解决步骤 (1) 使用图来建立问题模型. (2) 使用广度优先搜索解决问题. 图的定义 图模拟一组连接. 图由节点(node)和边(edge)组成.一个节点可能与众多节点直接相连,这些节点被称为邻居.图用于模拟不同的东西是如何相连的. 广度优先搜索 广度优先搜索是一种用于图的查找算法,可帮助回答两类问题. 第一类问题: