本文参考
在阅读了《Spark快速大数据分析》动物书后,大概了解到了spark常用的api,不过书中并没有给予所有api详细的案例,而且现在spark的最新版本已经上升到了2.4.5,动物书中的spark版本还停留在1.2.0版本,所以就有了这篇文章,在最新的2.4.5版本下测试常用的api
由于spark的惰性计算特性,RDD只有在第一次行动操作中被用到时才会真正进行计算,因此我打算将文章内容分为"转化操作API"和"行动操作API"两部分,同时因为pair RDD(RDD中的元素是键值对)的部分api较为特殊,所以我打算单独再写一篇文章
本文仅介绍转化操作API,前5个api —— map()、flatMap()、filter()、distinct()、sample()是针对一个RDD的转化操作,后续的api —— union()、intersection()、subtract()、cartesion()是针对两个RDD的转化操作
环境
idea + spark 2.4.5 + scala 2.11.12
RDD均通过SparkContext的parallelize()函数创建
map()函数
目的:
将函数应用于RDD中的每个元素,将返回值构成新的RDD
转化前后的RDD的元素类型可以不同(比如经典的WordCount示例中转化为了键值对元素)
代码:
val testList = List(1, 2, 3, 3)
val testRdd = sc.parallelize(testList)
testRdd.map(ele => ele * ele).foreach(ele => print(s"$ele "))
输出:
1 4 9 9
更高效的操作:
每个RDD被分为多个分区,这些分区在集群的不同节点上运行,可以使用mapPartitions()函数,将转化操作作用于每个分区的元素上,这种方法还可以为每个分区创建一个JDBC连接,而不是为每一个元素创建一个连接(此处不做示例)
mapPartitions()函数有两个参数,第一个参数接收一个函数,和map()函数相同,第二个参数为preservesPartitioning,默认值为false,仅当我们对pair RDD进行转化操作,并且没有修改键时设置为true
val testList = List(1, 2, 3, 3)
val testRdd = sc.parallelize(testList)
testRdd.mapPartitions(partition =>
partition.map(
ele => {
ele * ele
}
)).foreach(ele => print(s"$ele "))
?
flatMap()函数
目的:
将函数应用于RDD中的每个元素,将返回的迭代器的所有内容构成新的RDD,我们也常常说成是"压扁"
"压扁"这个词可能听上去不大好理解,我们提供给flatMap()的函数分别应用到RDD的那个元素上,不过返回的不是一个元素,而是一个返回值序列的迭代器,但输出的RDD不是由迭代器组成,得到的是一个包含各个迭代器可以访问的所有元素的RDD
转化前后的RDD的元素类型不变
代码:
val testList = List(1, 2, 3, 3)
val testRdd = sc.parallelize(testList)
testRdd.flatMap(ele => {
ele.to(5)
}).foreach(ele => print(s"$ele "))
我们也可以手动返回迭代器,这段代码也类似于
val testList = List(Range(1, 6), Range(2, 6), Range(3, 6), Range(3, 6))
val testRdd = sc.parallelize(testList)
testRdd.flatMap(_.iterator).foreach(ele => print(s"$ele "))
输出:
1 2 3 4 5 2 3 4 5 3 4 5 3 4 5
?
filter()函数
目的:
返回一个由传给filter()函数的元素组成的RDD,当函数返回值为true时,保留该元素,可以理解为 "被过滤"出来
代码:
val testList = List(1, 2, 3, 3)
val testRdd = sc.parallelize(testList)
testRdd.filter(ele => ele > 2).foreach(ele => print(s"$ele "))
输出:
3 3
更高效的操作:
通过过滤操作后,RDD中的元素减少,可以在filter()操作后执行coalesce()函数进行分区合并,第一个参数指定分区数,当指定的分区数大于当前RDD的分区数时不会进行合并,当前分区数不变(除非指定第二参数shuffle为true,默认为false),当指定的分区数小于当前的RDD的分区数时会进行合并,并且不会进行shuffle(尽量不要指定极端的情况,如指定合并后的分区数为1)
val testList = List(1, 2, 3, 3)
val testRdd = sc.parallelize(testList)
testRdd.filter(ele => ele > 2).coalesce(5).foreach(ele => print(s"$ele "))
?
distinct()函数
目的:
去重,因为会进行shuffle,所以不推荐此操作
代码:
val testList = List(1, 2, 3, 3)
val testRdd = sc.parallelize(testList)
testRdd.distinct().foreach(ele => print(s"$ele "))
输出:
1 2 3
?
sample()函数
目的:
对RDD进行采样
代码:
val testList = List(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
val testRdd = sc.parallelize(testList)
testRdd.sample(false, 0.9).foreach(ele => print(s"$ele "))
第一个参数withReplacement指定false时,第二个参数fraction必须为 [ 0 , 1 ] 之间,表示每个元素被选中的可能性
按照该示例,也有人将该函数理解为,从所有元素中抽取90%返回,但是在源码中已经我们可以看到"without replacement: probability that each element is chosen; fraction must be [0, 1]",并且也指明"This is NOT guaranteed to provide exactly the fraction of the count of the given [[RDD]]",因此这种理解方式我认为是错误的
输出:
0 1 2 3 5 6 8 9(不一定)
疑点:
当第一个参数withReplacement指定true时,第二个参数fraction并不要求一定小于1,源码中注释为"with replacement: expected number of times each element is chosen; fraction must be greater than or equal to 0"
val testList = List(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
val testRdd = sc.parallelize(testList)
testRdd.sample(true, 3).foreach(ele => print(s"$ele "))
输出:0 0 1 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 7 7 8 9 9
目前不大理解是如何在采样的,希望各位看官大大能在评论区发表看法哈
===============暂时更新到这儿哈==============
?
?
原文地址:https://www.cnblogs.com/kuluo/p/12545374.html