限流实现与解决方案

https://blog.csdn.net/qq_32447301/article/details/86659474

一、限流操作:

为什么限流,是防止用户恶意刷新接口,因为部署在外部服务器,并且我们采用websocket的接口实现的,公司没有对硬件升级,导致程序时长崩溃,为了解决这个问题,请教公司的大佬,提出一个方案,限流操作。但是最后找到原因所在,解决了,吞吐量1万6左右,用的测试服务器,进行测试的,我开发的笔记本进行压测,工具是Jmeter,结果我的电脑未响应,卡了,服务器还没有挂。
限流那些方法
常见的限流:
1、Netflix的hystrix
2、阿里系开源的sentinel
3、说白了限流,为了处理高并发接口那些方式:队列,线程,线程池,消息队列、 kafka、中间件、sentinel:直接拒绝、Warm Up、匀速排队等
技术层面:
1、判断是否有相同的请求,可以通过自身缓存挡住相同请求
2、用负载均衡,比如nginx
3、用缓存数据库,把热点数据get到缓存中,redis,ES
4、善于使用连接池
业务层面:
1、加入交互,排队等待
二、应用级别限流与限流实现:
方法一、使用google的guava,令牌桶算法实现:平滑突发限流 ( SmoothBursty) 、平滑预热限流 ( SmoothWarmingUp) 实现

<!--Java项目广泛依赖 的核心库-->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>23.0</version>
</dependency>

package com.citydo.dialogue.controller;

import com.google.common.util.concurrent.RateLimiter;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;

import java.util.Collections;

@RestController
public class HomeController {

// 这里的1表示每秒允许处理的量为10个
private RateLimiter limiter = RateLimiter.create(10.0);
//RateLimiter.create(doublepermitsPerSecond, long warmupPeriod, TimeUnit unit);
//RateLimiter limiter = RateLimiter.create(5, 1000, TimeUnit.MILLISECONDS);
//permitsPerSecond: 表示 每秒新增 的令牌数
// warmupPeriod: 表示在从 冷启动速率 过渡到 平均速率 的时间间隔

@GetMapping("/test/{name}")
public String Test(@PathVariable("name") String name){
// 请求RateLimiter, 超过permits会被阻塞
final double acquire = limiter.acquire();
System.out.println("--------"+acquire);
//判断double是否为空或者为0
if(acquire>=(-1e-6)&&acquire<=(1e-6)){
return name;
}else{
return "操作太频繁";
}
}
}
这个有点类似与QPS流量控制:
当 QPS 超过某个阈值的时候,则采取措施进行流量控制。
直接拒绝:
方式是默认的流量控制方式,当QPS超过任意规则的阈值后,新的请求就会被立即拒绝,拒绝方式为抛出Exception或者返回值404。这种方式适用于对系统处理能力确切已知的情况下,比如通过压测确定了系统的准确水位时。

方法二、请求一次redis增加1,key可以是IP+时间或者一个标识+时间,没有就创建,需要设置过期时间
设置拦截器:

package com.citydo.dialogue.config;

import com.citydo.dialogue.service.AccessLimitInterceptor;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurationSupport;

/**
* 拦截器配置
* @author nick
*/

@Configuration
public class InterceptorConfig extends WebMvcConfigurationSupport {

@Override
public void addInterceptors(InterceptorRegistry registry) {
//addPathPatterns 添加拦截规则
registry.addInterceptor(new AccessLimitInterceptor())
//添加需要拦截请求的路径
.addPathPatterns("/**");
//swagger2 放行 .excludePathPatterns("/swagger-resources/**", "/webjars/**", "/v2/**", "/swagger-ui.html/**");
//.excludePathPatterns("/*")
//去除拦截请求的路径
}

@Override
public void addViewControllers(ViewControllerRegistry registry) {
registry.addViewController("/");
}
}

拦截方法

package com.citydo.dialogue.service;

import com.citydo.dialogue.entity.AccessLimit;
import com.citydo.dialogue.utils.IpUtil;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.web.method.HandlerMethod;
import org.springframework.web.servlet.HandlerInterceptor;
import org.springframework.web.servlet.ModelAndView;

import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.lang.reflect.Method;
import java.util.concurrent.TimeUnit;

public class AccessLimitInterceptor implements HandlerInterceptor {

//使用RedisTemplate操作redis

@Autowired
private RedisTemplate<String, Integer> redisTemplate;

@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
if (handler instanceof HandlerMethod) {
HandlerMethod handlerMethod = (HandlerMethod) handler;
Method method = handlerMethod.getMethod();
if (!method.isAnnotationPresent(AccessLimit.class)) {
return true;
}
AccessLimit accessLimit = method.getAnnotation(AccessLimit.class);
if (accessLimit == null) {
return true;
}
int limit = accessLimit.limit();
int sec = accessLimit.sec();
String key = IpUtil.getIpAddr(request) + request.getRequestURI();
//资源唯一标识
String formatDate=new SimpleDateFormat("yyyyMMddHHmm").format(new Date());
//String key="request_"+formatDate;
Integer maxLimit = redisTemplate.opsForValue().get(key);
if (maxLimit == null) {
//set时一定要加过期时间
redisTemplate.opsForValue().set(key, 1, sec, TimeUnit.SECONDS);
} else if (maxLimit < limit) {
redisTemplate.opsForValue().set(key, maxLimit + 1, sec, TimeUnit.SECONDS);
} else {
output(response, "请求太频繁!");
return false;
}
}
return true;
}

public void output(HttpServletResponse response, String msg) throws IOException {
response.setContentType("application/json;charset=UTF-8");
ServletOutputStream outputStream = null;
try {
outputStream = response.getOutputStream();
outputStream.write(msg.getBytes("UTF-8"));
} catch (IOException e) {
e.printStackTrace();
} finally {
outputStream.flush();
outputStream.close();
}
}

@Override
public void postHandle(HttpServletRequest request, HttpServletResponse response, Object handler, ModelAndView modelAndView) throws Exception {

}

@Override
public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {

}
}

可以设置成注解,当然也可以直接添加参数

package com.citydo.dialogue.entity;

import java.lang.annotation.*;

@Inherited
@Documented
@Target({ElementType.FIELD,ElementType.TYPE,ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface AccessLimit {
//标识 指定sec时间段内的访问次数限制
int limit() default 5;
//标识 时间段
int sec() default 5;
}

redis编写配置

package com.citydo.dialogue.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;

/**
* 解决redis乱码问题
* 解决配置问题
* @author nick
*/
@Configuration
public class RedisConfig {
/**
* 此方法解决存储乱码
*/
@Bean
public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
RedisTemplate<Object, Object> template = new RedisTemplate<Object, Object>();
template.setConnectionFactory(redisConnectionFactory);
template.setKeySerializer(new StringRedisSerializer());
template.setValueSerializer(new GenericJackson2JsonRedisSerializer());
template.setHashKeySerializer(new GenericJackson2JsonRedisSerializer());
template.setHashValueSerializer(new GenericJackson2JsonRedisSerializer());
template.afterPropertiesSet();
return template;
}
}

方法三、分布式限流,分布式限流最关键的是要将限流服务做成原子化,而解决方案可以使用redis+lua或者nginx+lua技术进行实现。

方法四、可以使用池化技术来限制总资源数:连接池、线程池。比如分配给每个应用的数据库连接是 100,那么本应用最多可以使用 100 个资源,超出了可以 等待 或者 抛异常。

方法五、限流总并发/连接/请求数,如果你使用过 Tomcat,其 Connector 其中一种配置有如下几个参数:

maxThreads:
Tomcat 能启动用来处理请求的 最大线程数,如果请求处理量一直远远大于最大线程数,可能会僵死。
maxConnections:
瞬时最大连接数,超出的会 排队等待。
acceptCount:
如果 Tomcat 的线程都忙于响应,新来的连接会进入 队列排队,如果 超出排队大小,则 拒绝连接。

方法六、限流某个接口的总并发/请求数,使用 Java 中的 AtomicLong,示意代码:

try{
if(atomic.incrementAndGet() > 限流数) {
//拒绝请求
} else {
//处理请求
}
} finally {
atomic.decrementAndGet();
}

方法七、 限流某个接口的时间窗请求数使用 Guava 的 Cache,示意代码:

LoadingCache counter = CacheBuilder.newBuilder()
.expireAfterWrite(2, TimeUnit.SECONDS)
.build(newCacheLoader() {
@Override
public AtomicLong load(Long seconds) throws Exception {
return newAtomicLong(0);
}
});
longlimit =1000;
while(true) {
// 得到当前秒
long currentSeconds = System.currentTimeMillis() /1000;
if(counter.get(currentSeconds).incrementAndGet() > limit) {
System.out.println("限流了: " + currentSeconds);
continue;
}
// 业务处理
不管哪种目的是为了,进行限流操作。
参考:https://blog.csdn.net/fanrenxiang/article/details/80683378
参考:https://mp.weixin.qq.com/s/2_oDGJiI1GhaNYnaeL7Qpg
源码:https://github.com/863473007/springboot_current_limiting

原文地址:https://www.cnblogs.com/cuiqq/p/12286132.html

时间: 2024-11-29 05:58:54

限流实现与解决方案的相关文章

Spring Cloud限流思路及解决方案

转自: http://blog.csdn.net/zl1zl2zl3/article/details/78683855 在高并发的应用中,限流往往是一个绕不开的话题.本文详细探讨在Spring Cloud中如何实现限流. 在 Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法.常见的限流算法有漏桶算法以及令牌桶算法.这个可参考 https://www.cnblogs.com/LBSer/p/4083131.html ,写得通俗易懂,你值得拥有,我就不拽文

分布式环境 限流解决方案

业务背景介绍 对于web应用的限流,光看标题,似乎过于抽象,难以理解,那我们还是以具体的某一个应用场景来引入这个话题吧. 在日常生活中,我们肯定收到过不少不少这样的短信,"双11约吗?,千款-.","您有幸获得唱读卡,赶快戳链接-".这种类型的短信是属于推广性质的短信.为什么我要说这个呢?听我慢慢道来. 一般而言,对于推广营销类短信,它们针对某一群体(譬如注册会员)进行定点推送,有时这个群体的成员量比较大,譬如京东的会员,可以达到千万级别.因此相应的,发送推广短信的

基于redis+lua实现高并发场景下的秒杀限流解决方案

转自:https://blog.csdn.net/zzaric/article/details/80641786 应用场景如下: 公司内有多个业务系统,由于业务系统内有向用户发送消息的服务,所以通过统一消息系统对外暴露微服务接口供外部业务系统调用,所有公司内业务系统的消息(短信,APP,微信)推送都由统一消息系统去推送,短信推送需要走外部短信通道商去发送短信,APP和微信走内部系统的push服务器,但是不管是短信通道商还是内部push服务器都会有每秒上限的控制.在这假设n/s条. 以下是统一消息

高并发解决方案限流技术-----计数器

1.它是限流算法中最简单最容易的一种算法 计数器实现限流 每分钟只允许10个请求 第一个请求进去的时间为startTime,在startTime + 60s内只允许10个请求 当60s内超过十个请求后,拒绝,不超过,到第60s 重新设置时间 package com.aiyuesheng.utils; import java.util.concurrent.atomic.AtomicInteger; import lombok.Getter; import lombok.Setter; /** *

coding++:高并发解决方案限流技术-使用RateLimiter实现令牌桶限流-Demo

RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时间内的访问量,譬如一些第三方服务会对用户访问量进行限制:限制网速,单位时间内只允许上传下载多少字节等. guava的maven依赖 <dependency> <groupId>com.google.guava</groupId> <artifactId>guav

coding++:高并发解决方案限流技术--计数器

1.它是限流算法中最简单最容易的一种算法 计数器实现限流 每分钟只允许10个请求 第一个请求进去的时间为startTime,在startTime + 60s内只允许10个请求 当60s内超过十个请求后,拒绝,不超过,到第60s 重新设置时间 package com.aiyuesheng.utils; import java.util.concurrent.atomic.AtomicInteger; import lombok.Getter; import lombok.Setter; /** *

快速入门系列--WCF--06并发限流、可靠会话和队列服务

这部分将介绍一些相对深入的知识点,包括通过并发限流来保证服务的可用性,通过可靠会话机制保证会话信息的可靠性,通过队列服务来解耦客户端和服务端,提高系统的可服务数量并可以起到削峰的作用,最后还会对之前的事务知识做一定补充. 对于WCF服务来说,其寄宿在一个资源有限的环境中,为了实现服务性能最大化,需要提高其吞吐量即服务的并发性.然而在不进行流量控制的情况下,并发量过多,会使整个服务由于资源耗尽而崩溃.因此为相对平衡的并发数和系统可用性,需要设计一个闸门(Throttling)控制并发的数量. 由于

高并发限流策略

在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流.缓存的目的是提升系统访问速度和增大系统能处理的容量,可谓是抗高并发流量的银弹:而降级是当服务出问题或者影响到核心流程的性能则需要暂时屏蔽掉,待高峰或者问题解决后再打开:而有些场景并不能用缓存和降级来解决,比如稀缺资源(秒杀.抢购).写服务(如评论.下单).频繁的复杂查询(评论的最后几页),因此需有一种手段来限制这些场景的并发/请求量,即限流. 限流的目的是通过对并发访问/请求进行限速或者一个时间窗口内的的请求进行限速来保护系统,一旦达到

聊聊高并发系统之限流特技-1 开涛

在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流.缓存的目的是提升系统访问速度和增大系统能处理的容量,可谓是抗高并发流量的银弹:而降级是当服务出问题或者影响到核心流程的性能则需要暂时屏蔽掉,待高峰或者问题解决后再打开:而有些场景并不能用缓存和降级来解决,比如稀缺资源(秒杀.抢购).写服务(如评论.下单).频繁的复杂查询(评论的最后几页),因此需有一种手段来限制这些场景的并发/请求量,即限流. 限流的目的是通过对并发访问/请求进行限速或者一个时间窗口内的的请求进行限速来保护系统,一旦达到