【深入理解Java虚拟机】类的初始化过程

类的初始化过程

类的加载过程.png

  • 加载

    将 Class 文件以二进制的形式加载到内存中

  • 验证

    校验 Class 文件是否安全,是否被正确的修改等

  • 准备

    为类变量申请内存,设置默认值,(初始化变量的默认值,比如int初始化为0,reference初始化为null) 但是达到类的初始化之前都没有初始化为真正的值。

零值.png

  • 解析

    将符号引用转换为直接引用

  • 初始化

    搜集并执行static代码块,以及 方法的执行, 是静态变量以及static 代码块组成

  • 使用

    为新对象申请内存, 为示例变量初始化默认值,为实例对象正确的设置初值;生成 方法

  • 卸载

    在运行的时候加上虚拟机参数 +XX:+TraceClassLoading 可以详细的看到类加载的信息,同样的要看类卸载的信息,可以使用 -XX:TraceClassUnloading

主动引用与被动引用

主动引用

  • 遇到new , getstatic , putstatic,invokestatic 字节码指令的时候,如果没有初始化,进行性初始化
  • 反射的时候,比如: System.load("xxxx.xxxx.xx");
  • 初始化一个类,但是这个类的父类没有初始化的时候(一个接口初始化的时候并不要求其父接口全部初始化)
  • JVM 需要执行的主类
  • 遇到动态语言支持的时候

被动引用

  • 通过子类引用父类的 静态变量 或者 静态方法,并不会初始化父类。 通过子类引用父类的静态属性,表示对父类的主动使用,而非对子类的主动使用
  • 通过构造类型的数组,不会初始化此类
  • 直接引用某个类的常亮的类型的时候,并不会对该对初始化

示例代码

class SuperClass {
  public static String msg = "Hello,World";

  static {
    System.out.println("SuperClass.static initializer");
  }
}

class SubClass extends SuperClass {

  public static String msg2 = "Hello,World";

  static {
    System.out.println("SubClass.static initializer");
  }
}
  • 验证通过子类引用父类的常量 不会初始化子类
   // 验证通过子类引用父类的常量并不会初始化子类
    System.out.println(SubClass.msg);
  • 验证初始化子类的同时一定会初始化父类
    System.out.println(SubClass.msg2);
  • 验证初始类型数组的时候并不初始化该类型

对于数组类型,其类型是JVM运行期间动态生成的,类型为[Lxxxx.xxxx.xxxx.xxxx.SubClasss; 其父类为Object,同理二维数组类型为[[Lxxx.xxx.xxx.SubClass; 其父类型为Object;

    SubClass[] subClasses = new SubClass[1];

常量池的引用

  • 源码
public class ReferenceExample002 {

  public static void main(String[] args) {
    //    实际运行的是 System.out.println(Hello, World);
    // 对于只有运行期才能确定的值,仍然会初始化类
    System.out.println(ExampleClass.msg);
  }
}

class ExampleClass {

  public static final String msg = "Hello, World";

  static {
    System.out.println("ExampleClass.static initializer");
  }
}
  • 代码反编译后的信息中移除了对ExampleClass 的直接引用

public class ReferenceExample002 {
    public ReferenceExample002() {
    }

    public static void main(String[] args) {
        System.out.println("Hello, World");
    }
}
  • 反编译ReferenceExample002得到的助记符信息如下:

反编译命令如: javap -c xxx.xxx.xxx

public class com.zhoutao.example.ReferenceExample002 {
  public com.zhoutao.example.ReferenceExample002();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return

  public static void main(java.lang.String[]);
    Code:
       0: getstatic     #2                  // Field java/lang/System.out:Ljava/io/PrintStream;
       3: ldc           #4                  // String Hello, World
       5: invokevirtual #5                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V
       8: return

编译期间不确定的常量值所在的类将被初始化

package com.zhoutao.classload;

import java.util.UUID;

public class ReferenceExample003 {

  public static void main(String[] args) {

    System.out.println(ExampleClass.uuid);
  }

  static class ExampleClass {

    // 此处引用的并非真正的常量值
    public static final String uuid = UUID.randomUUID().toString();

    static {
      System.out.println("ExampleClass.static initializer");
    }
  }
}

ExampleClass 的静态代码块将会被执行: uuid 的值在编译器并不能确定,所以仍然会初始化对应的类,注意和编译期间确定的常量值进行区分。

接口中的常量

? 当一个接口初始化时候,并不要求其父接口都完成初始化,然后类的初始化的时候要求父类完成初始化,而类的初始化的时候要求父类完成初始化

public class ReferenceExample005 {

  public static void main(String[] args) {
    System.out.println(SubInterface.b);
  }

  static interface ParentInterface {
    public static int a = 1;
  }

  static interface SubInterface extends ParentInterface {
    public static int b = 2;
  }
}

JVM 中父接口并不会因为子接口或者其实现类的初始化而初始化,其仅仅在使用该接口的静态变量的时候才会进行初始化

初始化过程的方法

Java 会为每个类生成 方法 ,对于静态变量会生出 方法

public class ReferenceExample006 {

  public static void main(String[] args) {
    ExampleClass exampleClass = ExampleClass.getInstance();
    System.out.println("a = " + ExampleClass.a);
    System.out.println("b = " + ExampleClass.b);
  }

  static class ExampleClass {
    public static int a;

    public static int b = 0;

    private static ExampleClass exampleClass = new ExampleClass();

    private ExampleClass() {
      a++;
      b++;
    }

    public static ExampleClass getInstance() {
      return exampleClass;
    }
  }
}

对于上面的代码,可以很简单的知道,其输出值为:

a = 1
b = 1

如果将 ExampleClass 中的定义 b 放置于ExampleClass 的私有构造方法之后,那么其输出的值将为:

a = 1
b = 0

这是因为在 方法的搜集static定义及以及代码块的时候,是按照顺序执行的,在私有构造方法时候,将会对b 进行赋值为1,然后在下一步 public static int b = 0; 又重新的将 b 定义为1

本文由博客群发一文多发等运营工具平台 OpenWrite 发布

原文地址:https://www.cnblogs.com/zhoutao825638/p/12388864.html

时间: 2024-10-12 23:31:39

【深入理解Java虚拟机】类的初始化过程的相关文章

深入理解java虚拟机---对象的创建过程(八)

1.对象的创建过程 由于类的加载是一个很复杂的过程,所以这里暂时略过,后面会详细讲解,默认为是已加载过的类.着重强调对象的创建过程. 注意: 最后一步的init方法是代码块和构造方法. 以上是总图,下面分步骤详细讲解 A: 虚拟机为对象分配内存方式 1. 指针碰撞: 堆内存规整时,这时就可以把其看做一半连续内存被占用,一半连续的内存空闲.所以当创建新对象时,从空闲的内存中分配空间给新对象 2.空闲列表: 堆内存是不连续的,这就需要虚拟机维护一个内存列表,用于记录当前内存是否被占用,当新创建对象时

《深入理解java虚拟机》:类的初始化

深入理解java虚拟机>:类的初始化 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用和卸载七个阶段.其中验证.准备.解析3个部分统称为连接.类加载的过程包括了加载.验证.准备.解析.初始化五个阶段. 加载.验证.准备.初始化和卸载这5个阶段的顺序时确定的,类的加载过程必须按照这种顺序按部就班的开始,而解析阶段则不一定,它在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也成为动态绑定或晚期绑定).另外注意这里的

《深入理解Java虚拟机》:类加载的过程

<深入理解Java虚拟机>:类加载的过程 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用和卸载七个阶段.其中类加载的过程包括了加载.验证.准备.解析.初始化五个阶段. 下面详细讲述类加载过程中每个阶段所做的工作. 加载 加载时类加载过程的第一个阶段,在加载阶段,虚拟机需要完成以下三件事情: 1.通过一个类的全限定名来获取其定义的二进制字节流. 2.将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构. 3.在Java堆中生成一

【深入理解Java虚拟机】Java内存区域模型、对象创建过程、常见OOM

本文内容来源于<深入理解Java虚拟机>一书,非常推荐大家去看一下这本书.最近开始看这本书,打算再开一个相关系列,来总结一下这本书中的重要知识点.呃呃呃,说好的那个图片请求框架呢~  不要急哈,因为这个请求框架设计的内容还是比较广的,目前业余时间正在编写当中,弄好了之后就会放上来.在完成之前,咱还是先来学习一下其他知识. 1.内存模型 java虚拟机在执行java程序的过程中会把它说管理的内存划分为若干个不同的数据区域,如下图所示: 图片来源于网络 (1)程序计数器(Program Count

深入理解Java虚拟机(类文件结构+类加载机制+字节码执行引擎)

周志明的<深入理解Java虚拟机>很好很强大,阅读起来颇有点费劲,尤其是当你跟随作者的思路一直探究下去,开始会让你弄不清方向,难免有些你说的啥子的感觉.但知识不得不学,于是天天看,反复看,就慢慢的理解了.我其实不想说这种硬磨的方法有多好,我甚至不推荐,我建议大家阅读这本书时,由浅入深,有舍有得,先从宏观去理解去阅读,再慢慢深入,有条不紊的看下去.具体来说,当你看书的某一部分时,先看这部分的章节名,了解这部分这一章在讲什么,然后再看某一章,我拿"类文件结构"这一章来说,我必须

深入理解Java虚拟机(类文件结构)

深入理解Java虚拟机(类文件结构) 欢迎关注微信公众号:BaronTalk,获取更多精彩好文! 之前在阅读 ASM 文档时,对于已编译类的结构.方法描述符.访问标志.ACC_PUBLIC.ACC_PRIVATE.各种字节码指令等等许多概念听起来都是云山雾罩.一知半解,原因就在于对类文件结构和类加载机制不够了解.直到后来细读了<深入理解 Java 虚拟机>中虚拟机执行子系统的相关内容,才建立了清晰的认知.如果你也和我一样,不了解类结构和类加载,但是工作中又涉及到字节码相关内容,相信后面两篇文章

【深入理解Java虚拟机】类加载机制

本文内容来源于<深入理解Java虚拟机>一书,非常推荐大家去看一下这本书. 本系列其他文章: [深入理解Java虚拟机]Java内存区域模型.对象创建过程.常见OOM [深入理解Java虚拟机]垃圾回收机制 1.类加载机制概述 虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制. 在java中,类型的加载.连接和初始化过程都是在程序运行期间完成的,这种策略虽然会带来一些性能开销,但是却为jav

深入理解Java虚拟机到底是什么

摘自:http://blog.csdn.net/zhangjg_blog/article/details/20380971 什么是Java虚拟机 我们都知道Java程序必须在虚拟机上运行.那么虚拟机到底是什么呢?先看网上搜索到的比较靠谱的解释: 虚拟机是一种抽象化的计算机,通过在实际的计算机上仿真模拟各种计算机功能来实现的.Java虚拟机有自己完善的硬体架构,如处理器.堆栈.寄存器等,还具有相应的指令系统.JVM屏蔽了与具体操作系统平台相关的信息,使得Java程序只需生成在Java虚拟机上运行的

深入理解java虚拟机笔记(一)-java内存区域与内存溢出

1. 前言 这是深入理解java虚拟机一书的笔记,来自第二章.因为这本书讲的比较深奥,这是第二次看,需要记录一下笔记. 2. 运行时数据区域 java虚拟机所管理的内存分为以下几个区域. ps:图片来自网络 2.1 程序计数器 程序计数器是一块较小的内存空间,他可以看做是当前线程所执行字节码的行号指示器.字节码解释器工作时就是通过改变这个计数器的值来选去下一条要执行的字节码指令,分之.循环.跳转.异常处理.线程恢复等基础功能都需要依赖这个计数器来完成. 这块内存是线程私有的内存. 如果线程在执行