进程池线程池

进程池,线程池

什么是池

# 要在程序开始的时候,还没提交任务先创建固定数量的进程或线程 放在一个池子里,这就是池

为什么要用池?

# 如果先开好进程/线程,那么有任务之后就可以直接使用这个池中的数据了
# 并且开好的线程或者进程会一直存在在池中 处理完毕进程并不关闭,可以被多个任务反复利用
     # 这样极大的减少了开启\关闭\调度线程/进程的时间开销
# 池中的线程/进程个数控制了操作系统需要调度的任务个数,控制池中的单位
        # 有利于提高操作系统的效率,减轻操作系统的负担

开启一个池

from concurrent.futures import ProcessPoolExecutor#引用的模块
from concurrent.futures import ThreadPoolExecutor
import time
import os
import random

def task(name):
    print(name)
    print(f'{os.getpid()} 准备接客')
    time.sleep(random.randint(1,3))

if __name__ == '__main__':

    p = ThreadPoolExecutor()  # 线程默认cup数*5 ,进程cup数
    for i in range(23):
        p.submit(task,1)  # 给进程池放任务,传参

原文地址:https://www.cnblogs.com/saoqiang/p/12388494.html

时间: 2024-10-12 03:27:42

进程池线程池的相关文章

进程池/线程池/协程

导入进程池线程池模块@@ from concurrent import ProcessPoolExecutor,ThreadPoolExecutor 同步提交,异步提交@@ from concurrent import ProcessPoolExecutor,ThreadPoolExecutorimport osdef foo(name): print('进程%s,进程号为%s'%(name,os.getpid())) return os.getpid() if __nmae__=='__mai

Python3 从零单排28_线程队列&进程池&线程池

1.线程队列 线程队列有三种:先进先出,后进先出,按优先级进出,具体如下: 1 import queue 2 3 # 先进先出 4 q = queue.Queue(3) 5 6 q.put(1) 7 q.put(2) 8 q.put(3) 9 # q.put(4) # 再放阻塞,等待队列消费 10 # q.put(4,block = False) # 不阻塞,强制放数据,如果满的情况下直接报错 等价与 q.put_nowait(4) 11 # q.put(4,block = True) # 阻塞

进程池线程池 协程

socket服务端实现并发 服务端需要满足以下3点: 1 固定的ip和port 2 24小时提供服务 3 能够实现并发 多线程实现并发: 服务端: import socket from threading import Thread import os server = socket.socket() server.bind(('127.0.0.1',8080)) server.listen(5) #半连接池 def communicate(conn): while True: try: dat

Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池

目录 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 2.死锁现象与递归锁 2.1死锁现象 2.2递归锁 3.信号量 4.GIL全局解释器锁 4.1背景 4.2为什么加锁 5.GIL与Lock锁的区别 6.验证计算密集型IO密集型的效率 6.1 IO密集型 6.2 计算密集型 7.多线程实现socket通信 7.1服务端 7.2客户端 8.进程池,线程池 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 #生产者消

并发编程---线程queue---进程池线程池---异部调用(回调机制)

线程 队列:先进先出 堆栈:后进先出 优先级:数字越小优先级越大,越先输出 import queue q = queue.Queue(3) # 先进先出-->队列 q.put('first') q.put(2) # q.put('third') # q.put(4) #由于没有人取走,就会卡主 q.put(4,block=False) #等同于q.get_nowait(), Ture 阻塞,Flase不阻塞,报异常满了 # # q.put(4,block=True,timeout=3) prin

android线程与线程池-----线程池(二)《android开发艺术与探索》

android 中的线程池 线程池的优点: 1 重用线程池中的线程,避免了线程的创建和销毁带来的性能开销 2 能有效的控制最大并发数,避免大量线程之间因为喜欢抢资源而导致阻塞 3 能够对线程进行简单的管理,提供定时执行以及指定间隔时间循环执行等 android 中的线程池源自java 中的Executor,Executor是一个接口,正真的实现是ThreadPoolExecutor. ThreadPoolExecutor 提供参数配置线程池. 下面是一个常用的构造方法: public Threa

9-[多线程] 进程池线程池

1 # 进程池,线程池 from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor import os import time def task(name): print('%s is running <pid: %s>' % (name, os.getpid())) time.sleep(2) if __name__ == '__main__': # p = Process(target=task, args=

GIL全局解释器锁和进程池.线程池

GIL全局解释器锁 GIL本质就是一把互斥锁,是夹在解释器身上的,同一个进程内的所有线程都需要先抢到GIl锁,才能执行解释器代码 GIL的优缺点: 优点:保证Cpython解释器内存管理的线程安全 缺点:同一个进程内所有的线程同一时刻只能有一个执行,也就是说Cpython解释器的多线程无法实现并行,无法取得多核优势 GIL与单线程 每个进程的内存空间中都有一份python解释器的代码,所以在单线程的情况下,GIL锁没有线程争抢,只有垃圾回收机制线程会定时获取GIL权限 GIL与多线程 有了GIL

(并发编程)进程池线程池--提交任务的2种方式、协程--yield greenlet,gevent模块

一:进程池与线程池(同步,异步+回调函数)先造个池子,然后放任务为什么要用"池":池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务池子内什么时候装进程:并发的任务属于计算密集型池子内什么时候装线程:并发的任务属于IO密集型 #提交任务的两种方式:    # 同步调用:提交完一个任务之后,就在原地等待,等待任务完完整整地运行完毕拿到结果后,再执行下一行代码,会导致任务是串行执行的    # 异步调用:提交完一个任务之后,不在原地等待,结果???,而是