【转】欧拉积分的一个延伸

求解$$\int_0^{\frac{\pi }{2}} {{{\ln }^2}\sin xdx}  = \int_0^{\frac{\pi }{2}} {{{\ln }^2}\cos xdx} $$的值.

显然\[\int_0^{\frac{\pi }{2}} {{{\ln }^2}\sin xdx} \underline{\underline {{\text{令}x = \frac{\pi }{2} - t}}} \int_0^{\frac{\pi }{2}} {{{\ln }^2}\cos xdx}.\]

记待求积分为$I$,注意到

(1)$\int_0^\pi  {{{\ln }^2}\sin \left( x \right)dx}  = 2\int_0^{\frac{\pi }{2}} {{{\ln }^2}\sin xdx}  = 2I$;

(2)$\int_0^\pi  {\ln \sin xdx}  = 2\int_0^{\frac{\pi }{2}} {\ln \sin xdx} \text{(Euler 积分)} =  - \pi \ln 2$;

(3)$\sum\limits_{n = 1}^\infty  {\frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{{\left( {2n - 1} \right)}^3}}}}=\beta(3)  = \frac{{{\pi ^3}}}{32}$,其中$\beta(s)$是Dirichlet beta 函数;

(4)$\int_0^{\frac{\pi }{2}} {{{\ln }^2}\tan xdx}  = \int_0^{\frac{\pi }{2}} {{{\ln }^2}\cot xdx}  = \frac{{{\pi ^3}}}{8}.$

事实上,我们有

\begin{align*}\int_0^{\frac{\pi }{2}} {{{\ln }^2}\tan xdx}  &= \int_0^\infty  {\frac{{{{\ln }^2}x}}{{1 + {x^2}}}dx}  = 2\int_0^1 {\frac{{{{\ln }^2}x}}{{1 + {x^2}}}dx}  = 2\int_0^1 {{{\ln }^2}x\sum\limits_{n = 1}^\infty  {{{\left( { - {x^2}} \right)}^{n - 1}}} dx} \\&= 2\sum\limits_{n = 1}^\infty  {{{\left( { - 1} \right)}^{n - 1}}\int_0^1 {{x^{2n - 2}}{{\ln }^2}xdx} }  = 4\sum\limits_{n = 1}^\infty  {\frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{{\left( {2n - 1} \right)}^3}}}}  = \frac{{{\pi ^3}}}{8}.\end{align*}

\begin{align*}2I &= \int_0^{\frac{\pi }{2}} {{{\left[ {\left( {\ln \sin \left( {2x} \right) - \ln 2} \right)} \right]}^2}dx}  - \int_0^{\frac{\pi }{2}} {2\ln \sin x\ln \cos xdx} \\&{ = \int_0^{\frac{\pi }{2}} {{{\ln }^2}\sin \left( {2x} \right)dx}  - 2\ln 2\int_0^{\frac{\pi }{2}} {{\rm{lnsin}}\left( {2x} \right)dx}  + \frac{{{{\ln }^2}2}}{2}\pi  - \int_0^{\frac{\pi }{2}} {2\ln \sin x\ln \cos xdx} }\\&{ = \frac{1}{2}\int_0^\pi  {{{\ln }^2}\sin \left( x \right)dx}  - \ln 2\int_0^\pi  {\ln \sin xdx}  + \frac{{{{\ln }^2}2}}{2}\pi  - \int_0^{\frac{\pi }{2}} {2\ln \sin x\ln \cos xdx} }\\&{ = I + \frac{{3{{\ln }^2}2}}{2}\pi  - 2\int_0^{\frac{\pi }{2}} {\ln \sin x\ln \cos xdx} }.\end{align*}

\[2I = \int_0^{\frac{\pi }{2}} {{{\ln }^2}\tan xdx}  + 2\int_0^{\frac{\pi }{2}} {\ln \sin x\ln \cos xdx} .\]

因此

\begin{align*}3I &= \int_0^{\frac{\pi }{2}} {{{\ln }^2}\tan xdx}  + \frac{{3{{\ln }^2}2}}{2}\pi  = \frac{{{\pi ^3}}}{8} + \frac{{3{{\ln }^2}2}}{2}\pi \\I &= \frac{{{\pi ^3}}}{{24}} + \frac{{{{\ln }^2}2}}{2}\pi.\end{align*}

同时我们有

\[\int_0^{\frac{\pi }{2}} {\ln \sin x\ln \cos xdx}  = \frac{{{{\ln }^2}2}}{2}\pi  - \frac{{{\pi ^3}}}{{48}}.\]

这题挺好的,哈哈,是Euler积分的一个延伸吧.

关于Dirichlet beta 函数可参阅:

http://mathworld.wolfram.com/DirichletBetaFunction.html或是http://en.wikipedia.org/wiki/Dirichlet_beta_function

解法二:$$ \beta(x,y) = 2\int_0^{\frac{\pi}{2}} \sin^{2x-1}(t) \cos^{2y-1}(t) \ dt $$

$$ \frac{\partial }{\partial x} \beta(x,y) = 4\int_0^{\frac{\pi}{2}} \sin^{2x-1}(t)\ln(\sin t) \cos^{2y-1}(t) \ dt$$

$$ \frac{\partial}{\partial y} \left( \frac{\partial}{\partial x} \beta(x,y) \right) = 8\int_0^{\frac{\pi}{2}} \sin^{2x-1}(t) \ln(\sin t ) \ln(\cos t) \cos^{2y-1}(t) \ dt $$

and we have $$ \beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} $$

so differentiate and put $ x =\frac{1}{2} , y = \frac{1}{2} $

$$ \psi \left(\frac{1}{2} \right) = -2\ln 2 - \gamma $$

$$ \psi(1) = -\gamma $$

$$ \psi^{(1)}(1) = \frac{\pi^2}{6} $$

$$ \beta \left( \frac{1}{2} , \frac{1}{2} \right) = \frac{\Gamma \left( \frac{1}{2} \right)^2}{\Gamma(1)} = \pi $$

thus you‘ll have the integral $ = \frac{\pi}{8} \left(4\ln(2)^2 - \frac{\pi^2}{6} \right) $

参阅:http://math.stackexchange.com/questions/492878/find-int-0-frac-pi2-ln-sinx-ln-cosx-mathrm-dx?rq=1

解法三:A third approach would be the Fourier series:

Namely, consider

$$\ln \left (2\sin \frac{x}{2}\right )=-\sum_{n=1}^{\infty}\frac{\cos nx}{n};(0<x<2\pi)$$

After squared:

$$\ln^2\left (2\sin \frac{x}{2}\right )=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\frac{\cos kx\cos nx}{kn}$$

Now, integrate the last equation from $x=0$ to $x=\pi$

On the right side, we get:

$$\frac{\pi}{2}\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi}{2}\frac{\pi^2}{6}=\frac{\pi^3}{12}$$

because $$I=\int_{0}^{\pi}\cos kx\cos nx\,dx=0;k\neq n$$ $$I=\frac{\pi}{2};k=n$$

On the left side:

$$\int_{0}^{\pi}\ln^2\left (2\sin \frac{x}{2}\right )\,dx= \ln^22 \int_{0}^{\pi}dx + 4\ln 2 \int_{0}^{\frac{\pi}{2}} \ln \left (\sin x\right )dx+2 \int_{0}^{\frac{\pi}{2}} \ln^2 \left (\sin x\right )dx $$

Since we  know that $ \int_{0}^{\frac{\pi}{2}} \ln(\sin x)dx=-\frac{\pi}{2}\ln(2) $ then we get $ \int_{0}^{\frac{\pi}{2}}\ln^{2}(\sin x)dx $ from the equation.

解法四:

Here is a completely different way to approach this integral, which relies on some elementary complex analysis(Cauchy‘s theorem). It is based on an approach which I have seen several times employed to compute $\int_0^{\pi/2}\log{(\sin{x})}\,dx$ (particularly, in Ahlfors‘s book).

The idea is to integrate the principal branch of $f(z) := \log^2{(1 - e^{2iz})} = \log^2{(-2ie^{iz}\sin{z})}$ over the contour below, and then let $R \to \infty$ and $\epsilon \to 0$.

First of all, $1 - e^{2iz} \leq 0$ only when $z = k\pi + iy$, where $k$ is integral and $y \leq 0$. Thus, in the region of the plane which is obtained by omitting the lines $\{k\pi + iy: y\leq 0\}$ for $k \in \mathbb Z$, the principal branch of $\log{(1-e^{2iz})}$ is defined and analytic. Note that, for each fixed $R$ and $\epsilon$, the contour we wish to integrate over is contained entirely within this region.

By Cauchy‘s theorem, the integral over the contour vanishes for each fixed $R$. Since $f(x + iR) = \log^2{(1 - e^{2ix}e^{-2R})} \to 0$ uniformly as $R \to \infty$, the integral over the segment $[iR,\pi/2 + iR]$ vanishes in the limit. Similarly, since $1 - e^{2iz} = O(z)$ as $z \to 0$, we have $f(z) = O(\log^2{|z|})$ for small enough $z$, which, since $\epsilon \log^2{\epsilon} \to 0$ with $\epsilon$, means that the  the integral over the circular arc from $i\epsilon$ to $\epsilon$ vanishes as $\epsilon \to 0$.

From the vertical sides of the contour, we get the contribution

\begin{align*}\int_{[\pi/2,\pi/2 + iR]} + \int_{[iR,i\epsilon]} f(z)\,dz & = i\int_0^R f(\pi/2 + iy)\,dy -i\int_\epsilon^R f(iy)\,dy.\end{align*}

Since $f(iy)$ and $f(\pi/2 + iy)$ are real, this contribution is purely imaginary.

Finally, the contribution from the bottom side of the contour, after letting $\epsilon \to 0$, is

\begin{align*}\int_0^{\pi/2} f(x)\,dx = \int_0^{\pi/2} \log^2{(-2ie^{ix}\sin{x})}\,dx,\end{align*}

and we know from the preceding remarks that the real part of this integral must vanish. For $x$ between $0$ and $\pi/2$, the quantity $2\sin{x}$ is positive. Writing $-ie^{ix} = e^{i(x - \pi/2)}$, we see that $x - \pi/2$ is the unique value of $\arg{(-2ie^{ix}\sin{x})}$ which lies in $(-\pi,\pi)$. Since we have chosen the principal branch of $\log{z}$, it follows from these considerations that $\log{(-2ie^{ix}\sin{x})} = \log{(2\sin{x})} + i(x-\pi/2)$, and therefore that

\begin{align*}\text{Re}{f(x)} &= \log^2{(2\sin{x})} - (x-\pi/2)^2 \\&= \log^2{(\sin{x})} + 2\log{2}\log{(\sin{x})} + \log^2{2} - (x - \pi/2)^2.\end{align*}

By setting $\int_0^{\pi/2} \text{Re}f(x)\,dx = 0$ we get

\begin{align*}\int_0^{\pi/2} \log^2{(\sin{x})}\,dx &= \int_0^{\pi/2}(x-\pi/2)^2\,dx - 2\log{2}\int_0^{\pi/2} \log{(\sin{x})}\,dx -\frac{\pi}{2}\log^2{2} \\& = \frac{1}{3}\left(\frac{\pi}{2}\right)^3 + \frac{\pi}{2} \log^2{2}\end{align*}

as expected

By similar methods, one can compute a variety of integrals of this form with little difficulty. Here are some examples I have computed for fun. All are proved by the same method, with the same contour, but different functions $f$.

1. Take $f(z) = \log{(1 + e^{2iz})} = \log{(2e^{iz}\cos{z})}$ and compare imaginary parts to get

$$\int_0^\infty \log{(\coth{y})}\,dy = \frac{1}{2}\left(\frac{\pi}{2}\right)^2.$$

2. Related to this question of yours (which incidentally led me here), one can show by taking $f(z) = \log^4(1 + e^{2iz})$ and comparing real parts that

$$\int_0^{\pi/2} x^2\log^2{(2\cos{x})}\,dx = \frac{1}{30}\left(\frac{\pi}{2}\right)^5 + \frac{1}{6}\int_0^{\pi/2} \log^4{(2\cos{x})}\,dx.$$Assuming the result of the other question, we then get

$$\int_0^{\pi/2} \log^4{(2\cos{x})}\,dx = \frac{19}{15}\left(\frac{\pi}{2}\right)^5.$$

3.Also related to the question cited in 2., taking $f(z) = z^2\log^2{(1 + e^{2iz})}$ and comparing real parts gives

$$\int_0^{\pi/2}x^2\log^2{(2\cos{x})}\,dx = \frac{1}{5}\left(\frac{\pi}{2}\right)^5 + \pi \int_0^\infty y\log^2{(1- e^{-2y})}\,dy.$$

Once more, assuming the result of the other question, we get

$$\int_0^\infty y\log^2{(1- e^{-2y})}\,dy = \frac{1}{45}\left(\frac{\pi}{2}\right)^4.$$

Actually, the integral in 3. has several interesting series expansions, and I would be very interested if someone could compute it without using the result from the question I cited. For one thing, that would give us a different proof of that result (which is why I started investigating it in the first place).

参阅:http://math.stackexchange.com/questions/58654/integrate-square-of-the-log-sine-integral-int-0-frac-pi2-ln2-sinx/58672#58672

再看一下推广:

\[\int_0^{\frac{\pi }{2}} {{{\ln }^n}\sin xdx}  = \frac{{\sqrt \pi  }}{{{2^{n + 1}}}}\frac{{{d^k}}}{{d{\alpha ^k}}}{\left( {\frac{{\Gamma \left( {\frac{{2\alpha  + 1}}{2}} \right)}}{{\Gamma \left( {\frac{{2\alpha  + 2}}{2}} \right)}}} \right)_{\alpha  = 0}}.\]

证明.注意到\[\int_0^{\frac{\pi }{2}} {{{\ln }^n}\sin xdx}  = \int_0^{\frac{\pi }{2}} {\frac{{{{\ln }^n}t}}{{\sqrt {1 - {t^2}} }}dt}. \]

令\[I\left( \alpha  \right) = \int_0^1 {\frac{{{t^{2\alpha }}}}{{\sqrt {1 - {t^2}} }}dt}  = \frac{1}{2}B\left( {\frac{1}{2},\frac{{2\alpha  + 1}}{2}} \right) = \frac{{\sqrt \pi  }}{2}\frac{{\Gamma \left( {\frac{{2\alpha  + 1}}{2}} \right)}}{{\Gamma \left( {\frac{{2\alpha  + 2}}{2}} \right)}},\]

则有\[{I^{\left( n \right)}}\left( \alpha  \right) = \int_0^1 {\frac{{{t^{2\alpha }}{2^n}{{\ln }^n}t}}{{\sqrt {1 - {t^2}} }}dt}  .\]

故有

\[\int_0^{\frac{\pi }{2}} {{{\ln }^n}\sin xdx}  = \int_0^{\frac{\pi }{2}} {\frac{{{{\ln }^n}t}}{{\sqrt {1 - {t^2}} }}dt}  = \frac{{{I^{\left( n \right)}}\left( 0 \right)}}{{{2^n}}} = \frac{{\sqrt \pi  }}{{{2^{n + 1}}}}\frac{{{d^k}}}{{d{\alpha ^k}}}{\left( {\frac{{\Gamma \left( {\frac{{2\alpha  + 1}}{2}} \right)}}{{\Gamma \left( {\frac{{2\alpha  + 2}}{2}} \right)}}} \right)_{\alpha  = 0}}.\]

另一种解法

Use generating series.  Consider the function $$f(z)=\sum_{k=0}^{\infty}S_{k}\frac{z^{k}}{k!}.$$ Then $$f(z)=\int_0^1 \left(\sum_{k=0}^\infty (-1)^k \log^k(\sin(\pi x)) z^k \right)dx=\int_{0}^{1}\frac{1}{\sin\left(\pi x\right)^{z}}dx=\frac{\Gamma\left(\frac{1-z}{2}\right)}{\sqrt{\pi}\Gamma\left(1-\frac{z}{2}\right)}.$$  The last equality follows from an identity of the Beta Function and then applying the Duplication Formula. From here, differentiating and plugging in $z=0$ allows you to conclude.

参阅:http://math.stackexchange.com/questions/121473/solve-the-integral-s-k-1k-int-01-log-sin-pi-xk-dx?rq=1

关于此类问题还可参阅:

http://math.stackexchange.com/questions/307593/a-hard-log-definite-integral-int-0-pi-4-ln3-sin-x-mathrm-dx?lq=1

或是http://math.stackexchange.com/questions/289587/log-sin-and-log-cos-integral-maybe-relate-to-fourier-series/309781#309781

http://math.stackexchange.com/questions/330057/how-to-evaluate-i-displaystyle-int-0-pi-2x2-ln-sin-x-ln-cos-xdx

本文转自:http://eufisky.is-programmer.com/posts/54402.html

时间: 2024-10-18 12:45:31

【转】欧拉积分的一个延伸的相关文章

(一)欧拉积分

欧拉是数学家心目中的英雄,欧拉积分具有重要的应用.先给出欧拉积分的性质以便为进入分数阶微积分打下基础. 1.1 $\beta$函数定义 B(α,β)=∫10xα?1(1?x)β?1dx 易看出$0$和$1$为奇点,积分在$\alpha>0,\beta>0$时收敛.a.对称性 B(α,β)=B(β,α) 只需作积分变量代换$x=1-t$即可. B(α,β)===∫10xα?1(1?x)β?1dx∫10(1?t)α?1tβ?1dtB(β,α) b.递推公式如果$\alpha>1$,那么成立等

欧拉函数+素数筛

欧拉函数,就是欧拉发现的一个关于求素数的的公式,然后我们编个函数实现这个公式. 欧拉发现求小于等于n的正整数中有多少个数与n互质可以用这个公式: euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),其中p1,p2……pn为x的所有素因数,x是不为0的整数.euler(1)=1(唯一和1互质的数就是1本身). 欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2. 其实直接看模板加注解想想就能看懂 筛选的原理就是找出n的因子,剔除含有

[bzoj 2818]欧拉函数

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 枚举最大公约数,对于每一个质数p,只需要求出1<=x,y<=(n/p)范围内gcd(x,y)=1的对数,而这个对数就是类似欧拉函数的一个前缀和. #include<cstdio> #include<cstring> using namespace std; const int maxn=10000005; bool check[maxn]; int pri

数论学习之费马与欧拉

数论复习之费马与欧拉 QB_UDG  2016年11月8日10:16:18 1.费马小定理 Fermat Theory 如果 p是素数,且a与p互质,即gcd(a,p)=1   那么(a^p-1) ≡ 1 (mod p) 应用: 求乘法逆元   乘法逆元: (x*x')≡ 1 (mod p) 称x'为x模p的乘法逆元 (注意,一定要是余1) 逆元 :(b/a) (mod n) = (b * x) (mod n). x表示a的逆元.并且 a*x ≡ 1 (mod n)  注意:只有当a与n互质的时

费马小定理,欧拉函数

在证明这些定理之前先证明一个有意思的定理. 对于0 mod m,n mod m , 2n mod m, 3n mod m, 4n mod m... (m-1)n mod m 对应解集序列 一定有 m/d份 0 d 2d 3d..m-d. (不一定按照顺序) 这样的解. 其中d = gcd(n,m) 具体点:n=8,m=12.  d = gcd(n,m)=4 对于 0 mod 12,8 mod 12,16 mod 12,24 mod 12,32 mod 12,40 mod 12...88 mod

【欧拉函数】

欧拉函数 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等. 例如φ(8)=4,因为1,3,5,7均和8互质. 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明. 简介 φ函数的值 φ(1)=1(唯一和1互质的数就是1本身). 若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质. 欧拉

lightoj1370欧拉函数

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of

HDU - 1286 找新朋友(欧拉函数)解题

找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13024    Accepted Submission(s): 6941 Problem Description 新年快到了,"猪头帮协会"准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是和会长是老朋友的,那么该会员的号码肯定和N有

洛谷 P1865 A % B Problem (欧拉筛+前缀和)

题目背景 题目名称是吸引你点进来的 实际上该题还是很水的 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m 接下来n行,每行两个整数 l,r 表示区间 输出格式: 对于每次询问输出个数 t,如l或r?[1,m]输出 Crossing the line 输入输出样例 输入样例#1: 2 5 1 3 2 6 输出样例#1: 2 Crossing the line 说明 [数据范围和约定] 对于20%的数据 1<=n<=10 1<=m<=10 对于100