漫画:什么是红黑树?

要理解红黑数,先要了解二叉查找树,二叉查找树(BST)具备什么特性呢?

1.子树上所有结点的值均小于或等于它的根结点的值。

2.子树上所有结点的值均大于或等于它的根结点的值。

3.左、右子树也分别为二叉排序树。

下图中这棵树,就是一颗典型的二叉查找树:

1.查看根节点9

2.由于10 > 9,因此查看右孩子13

3.由于10 < 13,因此查看左孩子11

4.由于10 < 11,因此查看左孩子10,发现10正是要查找的节点:

二叉查找树的缺陷

假设初始的二叉查找树只有三个节点,根节点值为9,左孩子值为8,右孩子值为12:

接下来我们依次插入如下五个节点:7,6,5,4,3。依照二叉查找树的特性,结果会变成什么样呢?

1.节点是红色或黑色。

2.根节点是黑色。

3.每个叶子节点都是黑色的空节点(NIL节点)。

4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

下图中这棵树,就是一颗典型的红黑树:

什么情况下会破坏红黑树的规则,什么情况下不会破坏规则呢?我们举两个简单的栗子:

1.向原红黑树插入值为14的新节点:

由于父节点15是黑色节点,因此这种情况并不会破坏红黑树的规则,无需做任何调整。

2.向原红黑树插入值为21的新节点:

由于父节点22是红色节点,因此这种情况打破了红黑树的规则4(每个红色节点的两个子节点都是黑色),必须进行调整,使之重新符合红黑树的规则。

变色:

 

为了重新符合红黑树的规则,尝试把红色节点变为黑色,或者把黑色节点变为红色。

下图所表示的是红黑树的一部分,需要注意节点25并非根节点。因为节点21和节点22连续出现了红色,不符合规则4,所以把节点22从红色变成黑色:

但这样并不算完,因为凭空多出的黑色节点打破了规则5,所以发生连锁反应,需要继续把节点25从黑色变成红色:

此时仍然没有结束,因为节点25和节点27又形成了两个连续的红色节点,需要继续把节点27从红色变成黑色:

左旋转:

 

逆时针旋转红黑树的两个节点,使得父节点被自己的右孩子取代,而自己成为自己的左孩子。说起来很怪异,大家看下图:

图中,身为右孩子的Y取代了X的位置,而X变成了自己的左孩子。此为左旋转。

右旋转:

 

顺时针旋转红黑树的两个节点,使得父节点被自己的左孩子取代,而自己成为自己的右孩子。大家看下图:

图中,身为左孩子的Y取代了X的位置,而X变成了自己的右孩子。此为右旋转。

我们以刚才插入节点21的情况为例:

首先,我们需要做的是变色,把节点25及其下方的节点变色:

此时节点17和节点25是连续的两个红色节点,那么把节点17变成黑色节点?恐怕不合适。这样一来不但打破了规则4,而且根据规则2(根节点是黑色),也不可能把节点13变成红色节点。

变色已无法解决问题,我们把节点13看做X,把节点17看做Y,像刚才的示意图那样进行左旋转

由于根节点必须是黑色节点,所以需要变色,变色结果如下:

这样就结束了吗?并没有。因为其中两条路径(17 -> 8 -> 6 -> NIL)的黑色节点个数是4,其他路径的黑色节点个数是3,不符合规则5。

这时候我们需要把节点13看做X,节点8看做Y,像刚才的示意图那样进行右旋转

最后根据规则来进行变色

如此一来,我们的红黑树变得重新符合规则。这一个例子的调整过程比较复杂,经历了如下步骤:

变色 -> 左旋转 -> 变色 -> 右旋转 -> 变色

几点说明:

1. 关于红黑树自平衡的调整,插入和删除节点的时候都涉及到很多种Case,由于篇幅原因无法展开来一一列举,有兴趣的朋友可以参考维基百科,里面讲的非常清晰。

2.漫画中红黑树调整过程的示例是一种比较复杂的情形,没太看明白的小伙伴也不必钻牛角尖,关键要懂得红黑树自平衡调整的主体思想。

出处:

漫画:什么是红黑树?

时间: 2024-10-02 22:43:31

漫画:什么是红黑树?的相关文章

红黑树存在的合理性

写在前面 主要描述为什么有了二叉查找树/平衡树还需要红黑树 1.二叉查找树的缺点 二叉查找树,相信大家都接触过,二叉查找树的特点就是左子树的节点值比父亲节点小,而右子树的节点值比父亲节点大,如图 基于二叉查找树的这种特点,我们在查找某个节点的时候,可以采取类似于二分查找的思想,快速找到某个节点.n 个节点的二叉查找树,正常的情况下,查找的时间复杂度为 O(logn). 之所以说是正常情况下,是因为二叉查找树有可能出现一种极端的情况,例如  这种情况也是满足二叉查找树的条件,然而,此时的二叉查找树

能够自平衡的【红黑树】,必知必会

红黑树 红黑树(英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组.它是在1972年由鲁道夫·贝尔发明的,他称之为"对称二叉B树",它现代的名字是在Leo J. Guibas和Robert Sedgewick于1978年写的一篇论文中获得的.它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的:它可以在 O(logn)时间内做查找,插入和删除,这里的n是树中元素的数目,摘自:维基百科-红黑树. 特点

B树、B+树、红黑树、AVL树比较

B树是为了提高磁盘或外部存储设备查找效率而产生的一种多路平衡查找树. B+树为B树的变形结构,用于大多数数据库或文件系统的存储而设计. B树相对于红黑树的区别 在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况.为什么会出现这样的情况,我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写.磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读

红黑树之删除节点

红黑树之删除节点 上一篇文章中讲了如何向红黑树中添加节点,也顺便创建了一棵红黑树.今天写写怎样从红黑树中删除节点. 相比于添加节点,删除节点要复杂的多.不过我们慢慢梳理,还是能够弄明白的. 回顾一下红黑树的性质 红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色.在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求: 节点是红色或黑色. 根节点是黑色. 每个叶节点(这里的叶节点是指NULL节点,在<算法导论>中这个节点叫哨兵节点,除了颜色属性外,其他属性值都为任

数据结构与算法-红黑树

前言 红黑树是工程中最常用到的一种自平衡二叉排序树,其和AVL树类似,都是在进行插入.删除时通过一定的调整操作来维持相对稳定的树高,从而获得较好的查询性能. 性质 1. 节点是红色或黑色. 2. 根节点是黑色. 3 每个叶节点(null节点)是黑色的. 4 每个红色节点的两个子节点都是黑色.(从每个叶子到根的所有路径上不能有两个连续的红色节点) 5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点. 维护红黑树形状(树高)的,主要就是4.5两条性质,性质4决定了最长的路径莫过于红黑间隔

数据结构学习笔记-排序/队/栈/链/堆/查找树/红黑树

排序: 插入排序:每次从剩余数据中选取一个最小的,插入已经排序完成的序列中 合并排序:将数据分成左右两组分别排序,然后合并,对每组数据的排序递归处理. 冒泡排序:重复交换两个相邻元素,从a[1]开始向a[0]方向冒泡,然后a[2]...当a[i]无法继续往前挤的时候说明前面的更小了,而且越往前越小(挤得越往前) 堆排序:构造最大堆,每次取走根结点(自然是最大的),再调用MAX-HEAPIFY算法(见后文的堆)恢复最大堆的性质,重复取走根结点 快速排序(对A[r]-A[n]进行排序): 1.从序列

红黑树与AVL(平衡二叉树)的区别

关于红黑树和AVL树,来自网络: 1 好处 及 用途 红黑树 并不追求"完全平衡 "--它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能. 红黑树能够以 O(log2  n)  的时间复杂度进行搜索.插入.删除操作.此外,由于它的设计,任何不平衡都会在三次旋转之内解决.当然,还有一些更好的,但实现起来更复杂的数据结构 能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较"便宜"的解决方案.红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高

数据结构-红黑树

转自:http://dongxicheng.org/structure/red-black-tree/ 1. 简介 红黑树是一种自平衡二叉查找树.它的统计性能要好于平衡二叉树(AVL树),因此,红黑树在很多地方都有应用.在C++ STL中,很多部分(目前包括set, multiset, map, multimap)应用了红黑树的变体(SGI STL中的红黑树有一些变化,这些修改提供了更好的性能,以及对set操作的支持).它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它

红黑树

弄了很久,学习过程中觉得很难,但学完了,其实感觉也就那样,就是情况多了些. 首先是插入,插入的时候其实也就3种情况,因为只有当插入的节点的父亲是红色的时候,此时红黑树的性质遭到破坏,需要旋转,再分1.叔父节点为红,此时只要改变颜色,但祖父节点颜色的改变可能会破坏红黑树的性质,所以要node = grandparent,继续向上,叔父为黑,这时需要旋转,所以得判断,自身的位置,也就是自己和父亲分别是左孩子还是右孩子,2.如果自身是右,父亲是左,的先把自己也旋转到左,再和自己是左,父亲也是左的情况一